MACHINE LEARNING ADVANCED FIBROSIS IN NASH ( ALADDIN) WITH WEB- BASED CALCULATION FOR PROBABILITY PREDICTION

被引:0
|
作者
Dunn, Winston [1 ]
Alkhouri, Naim [2 ]
Kundu, Ria [2 ]
Robert, Sage [1 ]
Nadeem, Rida [2 ]
Dunn, Nicholas [1 ]
Wong, Vincent Wai-Sun [3 ]
Verma, Nipun [4 ]
Yip, Terry Cheuk-Fung [3 ]
Loomba, Rohit [5 ]
Abdelmalek, Manal F. [6 ]
Diaz, Luis Antonio [7 ]
Devuni, Deepika [8 ]
Castera, Laurent [9 ]
Noureddin, Mazen [10 ]
Jafri, Syed-Mohammed [11 ]
Arab, Juan Pablo [12 ]
Charlton, Michael R. [13 ]
Wong, Grace Lai-Hung C. [14 ]
Yang, Liu [15 ]
Duseja, Ajay K. [4 ]
Chen, Vincent [16 ]
Singal, Ashwani K. [17 ]
Harrison, Stephen A. [18 ]
Al Yassin, Altaib [19 ]
Hino, Keisuke [20 ]
机构
[1] Univ Kansas, Med Ctr, Lawrence, KS 66045 USA
[2] Arizona Liver Hlth, Phoenix, AZ USA
[3] Chinese Univ Hong Kong, Hong Kong 91, Peoples R China
[4] Post Grad Inst Med Educ & Res, Chandigarh, India
[5] Univ Calif San Diego, San Diego, CA USA
[6] Mayo Clin, Rochester, MN USA
[7] Pontificia Univ Catolica Chile, Santiago, Chile
[8] UMass Chan Med Sch, Worcester, MA USA
[9] Univ Paris Cite, Beaujon Hosp, AP HP, Dept Hepatol,Inserm,UMR1149, Clichy, France
[10] Houston Res Inst, Houston, TX USA
[11] Henry Ford Hlth Syst, Detroit, MI USA
[12] Univ Western Ontario, London, ON, Canada
[13] Univ Chicago, Chicago, IL 60637 USA
[14] Chinese Univ Hong Kong, Med Data Analyt Ctr MDAC, Hong Kong, Peoples R China
[15] Mayo Clin Florida, Ponte Vedra Beach, FL USA
[16] Univ Michigan, Med Ctr, Ann Arbor, MI 48109 USA
[17] Univ South Dakota, Sanford Sch Med, Dept Med, Vermillion, SD USA
[18] Pinnacle Clin Res Ctr, San Antonio, TX USA
[19] Univ Massachusetts, Sch Med, Amherst, MA 01003 USA
[20] Shunan Mem Hosp, Ube, Yamaguchi, Japan
关键词
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
2069A
引用
收藏
页码:S829 / S835
页数:7
相关论文
共 50 条
  • [1] MACHINE LEARNING ADVANCED FIBROSIS AND AT-RISK MASH (ALADDIN) WITH A WEB-BASED CALCULATOR FOR PROBABILITY PREDICTION
    Dunn, Winston
    Alkhouri, Naim
    Yip, Terry C.
    Castera, Laurent
    Wong, Vincent W.
    Wong, Grace L.
    Verma, Nipun
    Zhong, Bihui
    Duseja, Ajay
    Dubourg, Julie
    Harrison, Stephen A.
    Arab, Juan P.
    Jafri, Syed-Mohammed
    Singal, Ashwani K.
    Chen, Vincent L.
    Diaz, Luis A.
    GASTROENTEROLOGY, 2024, 166 (05) : S1629 - S1629
  • [2] MACHINE LEARNING ALGORITHMS FOR PREDICTION OF NASH AND ADVANCED FIBROSIS IN NAFLD PATIENTS
    Kosick, Heather M.
    McIntosh, Chris
    Fakhriyehasl, Mina
    Bera, Chinmay
    Adeyi, Oyedele
    Jhaveri, Kartik
    Patel, Keyur
    GASTROENTEROLOGY, 2022, 162 (07) : S1293 - S1294
  • [3] Prediction of fibrosis improvement in patients with advanced fibrosis due to NASH using a machine learning approach: Unravelling the placebo response
    Sanyal, A.
    Nguyen, T.
    Wang, L.
    Xiao, Y.
    Jia, C.
    Xu, R.
    Djedjos, S.
    Subramanian, M.
    Myers, R.
    Ratziu, V.
    Afdhal, N.
    Bosch, J.
    Harrison, S.
    Goodman, Z.
    JOURNAL OF HEPATOLOGY, 2018, 68 : S97 - S97
  • [4] Accurate prediction of clinical disease progression in patients with advanced fibrosis due to NASH using a Bayesian machine learning approach
    Latourelle, J. C.
    Tu, J.
    Das, R. K.
    Furchtgott, L.
    Schoeberl, B.
    Smiechowski, B.
    Church, B. W.
    Khalil, I. G.
    Hayete, B.
    Djedjos, S.
    Nguyen, T.
    Xiao, Y.
    Schall, R. A.
    Chen, G.
    Subramanian, M.
    Myers, R.
    Ratziu, V.
    Afdhal, N.
    Bosch, J.
    Goodman, Z.
    Harrison, S.
    Sanyal, A.
    JOURNAL OF HEPATOLOGY, 2018, 68 : S573 - S573
  • [5] Web service reliability prediction based on machine learning
    Song, Yang
    COMPUTER STANDARDS & INTERFACES, 2021, 73
  • [6] VALIDATION OF A MACHINE LEARNING-BASED APPROACH (DELTA LIVER FIBROSIS SCORE) FOR THE ASSESSMENT OF HISTOLOGIC RESPONSE IN PATIENTS WITH ADVANCED FIBROSIS DUE TO NASH
    Taylor-Weiner, Amaro H.
    Pokkalla, Harsha
    Hang, Ling
    Jia, Catherine
    Huss, Ryan
    Chung, Chuhan
    Elliott, Hunter
    Glass, Benjamin H.
    Pethia, Kishalve
    Carrasco-Zevallos, Oscar
    Shukla, Chinmay
    Subramanian, G. Mani
    Myers, Robert P.
    Wapinski, Ilan
    Khosla, Aditya
    Resnick, Murray
    Montalto, Michael
    Anstee, Quentin M.
    Wong, Vincent Wai-Sun
    Trauner, Michael H.
    Lawitz, Eric J.
    Harrison, Stephen A.
    Okanoue, Takeshi
    Romero-Gomez, Manuel
    Goodman, Zachary D.
    Loomba, Rohit
    Beck, Andrew
    Younossi, Zobair M.
    HEPATOLOGY, 2020, 72 : 949 - 951
  • [7] Machine Learning Based Indoor Line-of-Sight Probability Prediction
    Yang, Wenfei
    Zhang, Jiliang
    Zhang, Jie
    2019 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP 2019), 2019,
  • [8] NON-INVASIVE MACHINE LEARNING-BASED DIAGNOSIS OF SEVERE FIBROSIS IN PATIENTS WITH NASH
    Csete, Marie
    Pacheco, Fabiana
    Noureddin, Mazen
    Ramachandra, Vikas
    Mena, Edward
    HEPATOLOGY, 2021, 74 : 973A - 974A
  • [9] Composite biomarkers selected by machine learning predict severe fibrosis in NASH
    Brown, Elizabeth
    Thompson, John
    Ebert, Christina
    Apfel, Abraham
    Koenitzer, Jennifer
    Spires, Thomas
    Cvijic, Mary Ellen
    Charles, Edgar
    Luo, Yi
    Zhao, Lei
    Gordon, David
    Chung, Raymond
    Corey, Kathleen
    JOURNAL OF HEPATOLOGY, 2020, 73 : S417 - S417
  • [10] Web System for the Prediction of Type II Diabetes Based on Machine Learning
    Hernandez-Rubio, Erika
    Mackay, Carlos A. Jaimes
    Sosa, Paula G. Robles
    Galicia-Mejia, Ruben
    HCI INTERNATIONAL 2024 POSTERS, PT VI, HCII 2024, 2024, 2119 : 277 - 285