Corrosion inhibition of steel reinforcements in seawater sea sand concrete by alkali-activated slag based coatings

被引:10
|
作者
Das, Chandra Sekhar [1 ]
Zheng, Haibing [2 ]
Zhao, Xiao-Lin [1 ]
Dai, Jian-Guo [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[2] Henan Acad Sci, Zhengzhou 450046, Peoples R China
关键词
Corrosion; Steel bar; Alkali activated slag; Coating; Ultra -high-performance concrete; Seawater sea sand concrete; SUPPLEMENTARY CEMENTITIOUS MATERIALS; REINFORCING STEEL; IMPEDANCE SPECTROSCOPY; MECHANICAL-PROPERTIES; PORE SOLUTION; PASSIVATION; PERFORMANCE; RESISTANCE; STRENGTH; SURFACE;
D O I
10.1016/j.conbuildmat.2023.132210
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Chloride-induced corrosion is a severe problem for reinforced concrete structures exposed to marine environments. In such situations, the surface coating acts as a cost-effective means to inhibit the corrosion of steel reinforcement. In this work, the effectiveness of alkali-activated slag (AAS) coatings in inhibiting corrosion of steel reinforcement in seawater sea-sand concrete was assessed through a series of electrochemical tests. Two different types of AAS coatings (i.e., with and without latex polymer modification) were designed in addition to a conventional cement coating (i.e., for comparison purpose). It was found that AAS coatings are effective in preventing steel corrosion in both normal strength seawater sea sand concrete (NSSC) and ultra-high performance seawater sea sand concrete (UHP-SSC), which simulate a chloride contaminated concrete environment in short-term exposure. However, the protectiveness of conventional cement coating was valid only in UHP-SSC. The above protection effects were confirmed under both the fresh and hardened states of SSC, which were attributed to the coating-induced prepassivation of steel reinforcement and the coatings' chloride barrier effect. The corrosion inhibition mechanisms of the coated steel reinforcements in NSSC and UHPSSC are further elaborated.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Mechanical properties of alkali-activated slag concrete mixed by seawater and sea sand
    Yang, Shutong
    Xu, Jinjin
    Zang, Chaohui
    Li, Rui
    Yang, Qiubo
    Sun, Shuguang
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 196 : 395 - 410
  • [2] Steel corrosion behaviour in carbonated alkali-activated slag concrete
    Aperador, W.
    Mejia de Gutierrez, R.
    Bastidas, D. M.
    CORROSION SCIENCE, 2009, 51 (09) : 2027 - 2033
  • [3] Effects of Sand Type and Alkali Equivalent on Drying Shrinkage and Microstructure of Seawater-Sea Sand Alkali-Activated Slag Concrete
    Zhang, Jianbin
    Kang, Sixiang
    Shen, Yanran
    Song, Chenhao
    Lei, Haoliang
    Xie, Wei
    Chen, Xianyun
    Wang, Jize
    Wu, Wenda
    Wang, Xuefang
    MATERIALS, 2025, 18 (05)
  • [4] Influence of seawater on alkali-activated slag concrete
    Yubin Jun
    Jae Hong Kim
    Seong Ho Han
    Taewan Kim
    Materials and Structures, 2021, 54
  • [5] Influence of seawater on alkali-activated slag concrete
    Jun, Yubin
    Kim, Jae Hong
    Han, Seong Ho
    Kim, Taewan
    MATERIALS AND STRUCTURES, 2021, 54 (03)
  • [6] Study on the bond performance between CFRP bars and alkali-activated slag seawater and sea sand concrete
    Xu J.-J.
    Yang S.-T.
    Liu Z.-N.
    Gongcheng Lixue/Engineering Mechanics, 2019, 36 : 175 - 183
  • [7] Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilising seawater and sea sand
    Li, Ying-Lei
    Zhao, Xiao-Ling
    Raman, R. K. Singh
    Al-Saadi, Saad
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 159 : 704 - 724
  • [8] Composite foamed alkali-activated concrete with slag and steel slag
    Zeng, Lu
    Guo, Peilu
    Wang, Weiwei
    Zhang, Yi
    Wang, Shuping
    Peng, Xiaoqin
    MAGAZINE OF CONCRETE RESEARCH, 2020, 72 (05) : 262 - 270
  • [9] Alternative concrete based on alkali-activated slag
    Rodriguez, E.
    Bernal, S.
    Mejia de Gutierrez, R.
    Puertas, F.
    MATERIALES DE CONSTRUCCION, 2008, 58 (291) : 53 - 67
  • [10] Recent Advances in Alkali-Activated Materials with Seawater and Sea Sand
    Sun, Zengqing
    Li, Xiaoyu
    Liu, Qingsong
    Tang, Qingyu
    Lin, Xiaochen
    Fan, Xiaohui
    Huang, Xiaoxian
    Gan, Min
    Chen, Xuling
    Ji, Zhiyun
    MATERIALS, 2023, 16 (09)