Soil stabilization using additives is considered as one of the sustainable alternative techniques to deal with acute material shortages. Critically reviewing the contemporary works on soil stabilization would help practitioners and researchers to comprehend the merits and demerits of each stabilization method, influential parameters, and associated constraints. Furthermore, the critical analysis might aid the authorities to develop standard protocols about the use of various additives for soil stabilization, which would persuade the industry personnel to adopt sustainable practices. This paper presents a methodical review of the present soil stabilization methods under five key areas namely, underlying chemistry, the influential factors, performance indicators, economic and environmental aspects, and industrial perspectives. Findings of the review indicate that cement-based stabilizers perform well irrespective of soil type and curing conditions, on the contrary, lime-based stabilizers require appropriate temperature and pH for strength development. The degree of stabilization depends mainly on soil type, compaction level, and curing type and condition. Most of the soils treated with different additives exhibited a reduction in plasticity index, and maximum dry density against stabilizer dosage irrespective of soil type. The typical values of unconfined compressive strength and California bearing ratio of inorganic and organic soils except for peat, treated with a 5% dosage of all common types of stabilizers, fall in between 700 and 1,500 kPa and 30-60%, respectively. Cement and cementitious blends exhibited better cost-to-strength, energy-to-strength, and CO2 emission-to-strength ratios for soils with low plasticity whereas lime-blended stabilizers seemed effective for high-plastic soils.