Growth and Leaf Gas Exchange Upregulation by Elevated [CO2] Is Light Dependent in Coffee Plants

被引:3
|
作者
de Souza, Antonio H. [1 ]
de Oliveira, Ueliton S. [1 ]
Oliveira, Leonardo A. [1 ]
de Carvalho, Pablo H. N. [1 ]
de Andrade, Moab T. [1 ]
Pereira, Talitha S. [1 ]
Gomes, Carlos C. [1 ]
Cardoso, Amanda A. [2 ]
Ramalho, Jose D. C. [3 ,4 ]
Martins, Samuel C. V. [1 ]
DaMatta, Fabio M. [1 ]
机构
[1] Univ Fed Vicosa, Dept Biol Vegetal, BR-36570900 Vicosa, MG, Brazil
[2] North Carolina State Univ, Dept Crop & Soil Sci, Raleigh, NC 27695 USA
[3] ISA Univ Lisboa ULisboa, Ctr Estudos Florestais CEF, Dept Recursos Nat Ambiente & Terr DRAT, PlantStress & Biodivers Lab,Lab Associado Terra,In, Ave Republ, P-2784505 Oeiras, Portugal
[4] Univ NOVA Lisboa UNL, Fac Ciencias & Tecnol FCT, Unidade Geobiociencias Geoengn & Geotecnol GeoBioT, P-2829516 Monte de Caparica, Caparica, Portugal
来源
PLANTS-BASEL | 2023年 / 12卷 / 07期
关键词
climate change; elevated [CO2; nitrogen; photosynthetic down-regulation; shading; stomatal conductance; MESOPHYLL CONDUCTANCE; STOMATAL CONDUCTANCE; CLIMATE-CHANGE; PHOTOSYNTHESIS; ASSIMILATION; LIMITATIONS; NITROGEN; DROUGHT; ARABICA; CARBON;
D O I
10.3390/plants12071479
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Coffee (Coffea arabica L.) plants have been assorted as highly suitable to growth at elevated [CO2] (eC(a)), although such suitability is hypothesized to decrease under severe shade. We herein examined how the combination of eC(a) and contrasting irradiance affects growth and photosynthetic performance. Coffee plants were grown in open-top chambers under relatively high light (HL) or low light (LL) (9 or 1 mol photons m(-2) day(-1), respectively), and aC(a) or eC(a) (437 or 705 mu mol mol(-1), respectively). Most traits were affected by light and CO2, and by their interaction. Relative to aC(a), our main findings were (i) a greater stomatal conductance (g(s)) (only at HL) with decreased diffusive limitations to photosynthesis, (ii) greater g(s) during HL-to-LL transitions, whereas gs was unresponsive to the LL-to-HL transitions irrespective of [CO2], (iii) greater leaf nitrogen pools (only at HL) and higher photosynthetic nitrogen-use efficiency irrespective of light, (iv) lack of photosynthetic acclimation, and (v) greater biomass partitioning to roots and earlier branching. In summary, eC(a) improved plant growth and photosynthetic performance. Our novel and timely findings suggest that coffee plants are highly suited for a changing climate characterized by a progressive elevation of [CO2], especially if the light is nonlimiting.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Increased CO2 and light intensity regulate growth and leaf gas exchange in tomato
    Pan, Tonghua
    Wang, Yunlong
    Wang, Linghui
    Ding, Juanjuan
    Cao, Yanfei
    Qin, Gege
    Yan, Lulu
    Xi, Linjie
    Zhang, Jing
    Zou, Zhirong
    PHYSIOLOGIA PLANTARUM, 2020, 168 (03) : 694 - 708
  • [2] Multigenerational Effects of Elevated CO2 and N Supply on Leaf Gas Exchange Traits in Wheat Plants
    Wang, Xizi
    Rosenqvist, Eva
    Zong, Yuzheng
    Li, Xiangnan
    Liu, Fulai
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2024, 210 (04)
  • [3] Growth and Leaf Gas Exchange in Three Birch Species Exposed to Elevated Ozone and CO2 in Summer
    Yasutomo Hoshika
    Makoto Watanabe
    Naoki Inada
    Takayoshi Koike
    Water, Air, & Soil Pollution, 2012, 223 : 5017 - 5025
  • [4] Growth and Leaf Gas Exchange in Three Birch Species Exposed to Elevated Ozone and CO2 in Summer
    Hoshika, Yasutomo
    Watanabe, Makoto
    Inada, Naoki
    Koike, Takayoshi
    WATER AIR AND SOIL POLLUTION, 2012, 223 (08): : 5017 - 5025
  • [5] THE INFLUENCE OF ELEVATED CO2 ON GROWTH AND AGE-RELATED-CHANGES IN LEAF GAS-EXCHANGE
    PEARSON, M
    BROOKS, GL
    JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 (292) : 1651 - 1659
  • [6] Temperature and CO2 dependent gas exchange of Fagus sylvatica L. after growth at elevated CO2 concentration
    Strassemeyer, J
    Forstreuter, M
    Overdieck, D
    VERHANDLUNGEN DER GESELLSCHAFT FUR OKOLOGIE, VOL 27, 1997, : 303 - 309
  • [7] Leaf gas exchange and carbohydrate concentrations in Pinus pinaster plants subjected to elevated CO2 and a soil drying cycle
    Picon-Cochard, C
    Guehl, JM
    ANNALS OF FOREST SCIENCE, 1999, 56 (01) : 71 - 76
  • [8] Genotypic variation of the interactive effects of elevated temperature and CO2 on leaf gas exchange and early growth of sugarcane
    De Silva, A. L. Chandrajith
    Senarathna, H. A. K. N. Nishadi
    De Costa, W. A. Janendra M.
    PHYSIOLOGIA PLANTARUM, 2021, 173 (04) : 2276 - 2290
  • [9] AN EVALUATION OF LIGHT AND CO2 LIMITATION OF LEAF PHOTOSYNTHESIS BY CO2 GAS-EXCHANGE ANALYSIS
    DIETZ, KJ
    PLANTA, 1986, 167 (02) : 260 - 263
  • [10] Elevated [CO2] benefits coffee growth and photosynthetic performance regardless of light availability
    Marcal, Dinorah M. S.
    Avila, Rodrigo T.
    Quiroga-Rojas, Luisa F.
    de Souza, Raylla P. B.
    Gomes Junior, Carlos C.
    Ponte, Lucas R.
    Barbosa, Marcela L.
    Oliveira, Leonardo A.
    Martins, Samuel C., V
    Ramalho, Jose D. C.
    DaMatta, Fabio M.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 158 : 524 - 535