Automorphism group of the symmetry trace graph of real matrices

被引:1
|
作者
Wong, Dein [1 ]
Zhang, Chi [1 ]
Tian, Fenglei [2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221008, Jiangsu, Peoples R China
[2] Qufu Normal Univ, Sch Management, Rizhao, Peoples R China
关键词
Automorphisms of graphs; clique number; trace graph of matrices; ZERO-DIVISOR GRAPH; RING;
D O I
10.1080/00927872.2022.2096894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be the real field and M-m,M-n(R) be the set of all m x n matrices over R, where m,n >= 2. For a square matrix A is an element of M-m,M-m(R), tau(A) denotes the trace of A (the sum of all diagonal entries of A). The symmetry trace graph Gamma(t)(M-m,M-n(R)) of M-m,M-n(R) is defined to be a graph with vertex set of all nonzero matrices in M-m,M-n(R) and two vertices A and B are adjacent if and only if tau(AB')=0, where B' is the transpose of B. Clearly, Gamma(t)(M-m,M-n(R)) is undirected and without loops. In the present paper, by studying maximum cliques of Gamma(t)(M-m,M-n(R)), we determine the form of an arbitrary automorphism of Gamma(t)(M-m,M-n(R)).
引用
收藏
页码:254 / 263
页数:10
相关论文
共 50 条
  • [1] Automorphism group of rank-decreasing graph of matrices
    Ou, Shikun
    Wong, Dein
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (08) : 3181 - 3189
  • [2] Automorphism Group of Generalized Cayley Graph of Upper Triangular Matrices
    Wang, Denying
    Zhou, Jinming
    Ma, Xiaobin
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (10) : 4125 - 4137
  • [3] MOLECULAR SYMMETRY - AUTOMORPHISM GROUP OF A STEREOCHEMICAL GRAPH - INTERPRETATION AND APPLICATION
    WIPKE, WT
    BRAUN, H
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1976, 172 (SEP3): : 3 - 3
  • [4] SYMMETRY OF CHEMICAL STRUCTURES - A NOVEL METHOD OF GRAPH AUTOMORPHISM GROUP DETERMINATION
    BOHANEC, S
    PERDIH, M
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1993, 33 (05): : 719 - 726
  • [5] The Automorphism Group of the Lie Ring of Real Skew-Symmetric Matrices
    Xu, Jinli
    Zheng, Baodong
    Yang, Li
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [6] The automorphism group of the alternating group graph
    Zhou, Jin-Xin
    APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 229 - 231
  • [7] On the automorphism group of the Aschbacher graph
    Makhnev, A. A.
    Paduchikh, D. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (02): : 162 - 176
  • [8] Automorphism group of the derangement graph
    Deng, Yun-Ping
    Zhang, Xiao-Dong
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [9] Automorphism group and diameter of a graph
    Dankelmann, P.
    Erwin, D.
    Mukwembi, S.
    Rodrigues, B. G.
    Mwambene, E.
    Sabidussi, G.
    JOURNAL OF GRAPH THEORY, 2012, 70 (01) : 80 - 91
  • [10] The automorphism group of the Andrasfai graph
    Mirafzal, Seyed Morteza
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 60 - 63