Forest aboveground biomass estimation by GEDI and multi-source EO data fusion over Indian forest

被引:2
|
作者
Mohite, Jayantrao [1 ]
Sawant, Suryakant [1 ]
Pandit, Ankur [1 ]
Sakkan, Mariappan [1 ]
Pappula, Srinivasu [1 ]
Parmar, Abhijeet [2 ]
机构
[1] Tata Consultancy Serv, Res & Innovat R&I, Mumbai, India
[2] Bharti Inst Publ Policy, Indian Sch Business ISB, Technol & Res Partnerships, Hyderabad, India
关键词
Above ground biomass density; GEDI; multi-source EO datasets; Indian forest; optimal AGB model; CARBON STOCKS; EUCALYPTUS PLANTATIONS; INTEGRATING ICESAT-2; HEIGHT; DEFORESTATION; INFORMATION; EMISSIONS; DENSITY;
D O I
10.1080/01431161.2024.2307944
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Monitoring changes in carbon stocks through forest biomass assessment is crucial for carbon cycle studies. However, challenges in obtaining timely and reliable ground measurements hinder creation of the spatially continuous maps of forest aboveground biomass density (AGBD). This study proposes an approach for generating spatially continuous maps of forest aboveground biomass density (AGBD) by combining Global Ecosystem Dynamics Investigation (GEDI) LiDAR-based data with open-access earth observation (EO) data. The key contribution of the study lies in the systematic evaluation of various model configurations to select the optimal model for AGBD generation. The evaluation considered various model configurations, including predictor sets, spatial resolution, beam selection, and sensitivity thresholds. We used a Random Forest model, trained through five-fold cross-validation on 80% of the total data, to estimate AGBD in the Indian forest region. Model performance was assessed using the 20% independent test dataset. Results, using Sentinel-1 and 2 predictors, yielded R2 values of 0.55 to 0.60 and RMSE of 48.5 to 56.3 Mg/ha. Incorporating forest and agroclimatic zone attributes improved performance (R2: 0.59 to 0.69, RMSE: 42.2 to 53.3 Mg/ha). The selection of the top 15 predictors, which favoured features from Sentinel-2, DEM, forest attributes, and agroclimatic zones, and GEDI data with sensitivity >0.98, yielded the optimal model with an R2 of 0.64 and RMSE of 46.59 Mg/ha. The results underscore the significance of incorporating attributes like forest and agro-climatic zones and the need for an optimal model selection considering predictor types and GEDI shot characteristics. The top-performing model is validated in Simdega, Jharkhand (R2: 0.74, RMSE: 39.3 Mg/ha), demonstrating the methodological potential of this approach. Overall, this study emphasizes the methodological prospects of integrating multi-source open-access EO data to produce spatially continuous aboveground biomass (AGB) maps through data fusion.
引用
收藏
页码:1304 / 1338
页数:35
相关论文
共 50 条
  • [1] Estimation of Forest Aboveground Biomass Based on Multi-source Data
    Wei, Xuemei
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (09): : 1385 - 1390
  • [2] Spatial Scaling of Forest Aboveground Biomass Using Multi-Source Remote Sensing Data
    Wang, Xinchuang
    Jiao, Haiming
    [J]. IEEE ACCESS, 2020, 8 : 178870 - 178885
  • [3] SENSITIVITY OF MULTI-SOURCE SAR BACKSCATTER TO CHANGES OF FOREST ABOVEGROUND BIOMASS
    Huang, Wenli
    Sun, Guoqing
    Zhang, Zhiyu
    Ni, Wenjian
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2457 - 2460
  • [4] Sensitivity of Multi-Source SAR Backscatter to Changes in Forest Aboveground Biomass
    Huang, Wenli
    Sun, Guoqing
    Ni, Wenjian
    Zhang, Zhiyu
    Dubayah, Ralph
    [J]. REMOTE SENSING, 2015, 7 (08): : 9587 - 9609
  • [5] CHINA TYPICAL FOREST ABOVEGROUND BIOMASS ESTIMATION BY FUSION OF MULTI-PLATFORM DATA
    Pang Yong
    Li Zengyuan
    Meng Shili
    Lu Hao
    Jia Wen
    Liu Qingwang
    Li Haikui
    Lei Yuancai
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3557 - 3560
  • [6] Estimation of Forest Aboveground Biomass in Karst Areas Using Multi-Source Remote Sensing Data and the K-DBN Algorithm
    Qian, Chunhua
    Qiang, Hequn
    Wang, Feng
    Li, Mingyang
    [J]. REMOTE SENSING, 2021, 13 (24)
  • [7] Forest Height and Aboveground Biomass Mapping by synergistic use of GEDI and Sentinel Data using Random Forest Algorithm in the Indian Himalayan Region
    Bhandari, Konica
    Srinet, Ritika
    Nandy, Subrata
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (04) : 857 - 869
  • [8] Forest Height and Aboveground Biomass Mapping by synergistic use of GEDI and Sentinel Data using Random Forest Algorithm in the Indian Himalayan Region
    Konica Bhandari
    Ritika Srinet
    Subrata Nandy
    [J]. Journal of the Indian Society of Remote Sensing, 2024, 52 : 857 - 869
  • [9] Forest Types Classification Based on Multi-Source Data Fusion
    Lu, Ming
    Chen, Bin
    Liao, Xiaohan
    Yue, Tianxiang
    Yue, Huanyin
    Ren, Shengming
    Li, Xiaowen
    Nie, Zhen
    Xu, Bing
    [J]. REMOTE SENSING, 2017, 9 (11)
  • [10] Utilization of neural networks for the estimation of aboveground forest biomass from Ikonos satellite image and multi-source geo-scientific data
    Migolet, P.
    Coulibaly, L.
    Adegbidi, H. G.
    Hervet, E.
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 4339 - +