Mathematical modelling and performance analysis of a novel auto-cascade refrigeration cycle for ultra-low temperature applications

被引:2
|
作者
Karacayli, Ibrahim [1 ]
Altay, Lutfiye [2 ]
Hepbasli, Arif [3 ]
机构
[1] Ege Univ, Grad Sch Nat & Appl Sci, TR-35100 Bornova, Izmir, Turkiye
[2] Ege Univ, Fac Engn, Dept Mech Engn, TR-35100 Bornova, Izmir, Turkiye
[3] Yasar Univ, Fac Engn, Dept Energy Syst Engn, TR-35100 Bornova, Izmir, Turkiye
关键词
ultra-low temperature; refrigeration; auto-cascade refrigeration; ACR; exergy analysis; coefficient of performance; COP; second law efficiency; EXERGY;
D O I
10.1504/IJEX.2023.134611
中图分类号
O414.1 [热力学];
学科分类号
摘要
The main objective of this study is to assess both energetically and exergetically the performance of a novel auto-cascade refrigeration (NACR) cycle enhanced by an internal heat exchanger using R290/R170. In contrast to the ACR cycle with a -60 degrees C evaporation temperature, the NACR cycle displays a COP increase of 140.78% and a 148.67% improvement in exergy efficiency. Additionally, there is a notable decrease of 13.77% in compressor discharge temperature. For an evaporation temperature of -55 degrees C, the NACR cycle achieves a COP of 0.403 and an exergy efficiency of 14.61%, with the compressor discharge temperature registering at 126.60 degrees C.
引用
收藏
页码:229 / 245
页数:18
相关论文
共 50 条
  • [1] Thermodynamic performance optimization and analysis of an auto-cascade refrigeration cycle with vapor injection for ultra-low temperature freezer
    Li, Dawei
    Bai, Tao
    Yu, Jianlin
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2023, 145 : 425 - 435
  • [2] Performance analysis of a dual-ejector enhanced two-stage auto-cascade refrigeration cycle for ultra-low temperature refrigeration
    Shi, Rongxuan
    Bai, Tao
    Wan, Jiahao
    APPLIED THERMAL ENGINEERING, 2024, 240
  • [3] Performance Analysis of an Ejector Enhanced Two-Stage Auto-Cascade Refrigeration Cycle for Low Temperature Freezer
    Bai, Tao
    Lu, Yu
    Yan, Gang
    Yu, Jianlin
    JOURNAL OF THERMAL SCIENCE, 2021, 30 (06) : 2015 - 2026
  • [4] Performance Analysis of an Ejector Enhanced Two-Stage Auto-Cascade Refrigeration Cycle for Low Temperature Freezer
    Tao Bai
    Yu Lu
    Gang Yan
    Jianlin Yu
    Journal of Thermal Science, 2021, 30 : 2015 - 2026
  • [5] A novel method to measure the energy efficiency and performance of an auto-cascade refrigeration cycle
    Llopis, Rodrigo
    Martinez-Angeles, Manel
    Garcia-Valero, Marc
    APPLIED THERMAL ENGINEERING, 2023, 233
  • [6] Performance Analysis of an Ejector Enhanced Two-Stage Auto-Cascade Refrigeration Cycle for Low Temperature Freezer
    BAI Tao
    LU Yu
    YAN Gang
    YU Jianlin
    JournalofThermalScience, 2021, 30 (06) : 2015 - 2026
  • [7] Experimental optimization and evaluation of an R600a/R1150 auto-cascade refrigeration systems for ultra-low temperature applications
    Martinez-Angeles, Manel
    Calleja-Anta, Daniel
    Nebot-Andres, Laura
    Llopis, Rodrigo
    RESULTS IN ENGINEERING, 2024, 24
  • [8] Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle
    Liu, Jiarui
    Liu, Ye
    Yu, Jianlin
    Yan, Gang
    APPLIED THERMAL ENGINEERING, 2022, 200
  • [9] Performance analysis of a modified ejector-enhanced auto-cascade refrigeration cycle
    Liu, Shuilong
    Bai, Tao
    Wei, Yuan
    Yu, Jianlin
    ENERGY, 2023, 265
  • [10] Thermodynamic performance analysis of the fractionation and flash separation auto-cascade refrigeration cycle using low GWP refrigerant
    Li, Yinlong
    Dong, Peiwen
    Liu, Guoqiang
    Yan, Gang
    ENERGY, 2024, 308