Floating zone crystal growth, structure, and properties of a cubic Li5.5La3Nb1.5Zr0.5O12 garnet-type lithium-ion conductor

被引:1
|
作者
Ramette, Caleb [1 ]
Pressley, Lucas [2 ,3 ]
Avdeev, Maxim [4 ,5 ]
Lee, Minseong [6 ]
Kushwaha, Satya [2 ,7 ]
Krogstad, Matthew [8 ]
Sarker, Suchismita [9 ]
Cardon, Paul [1 ]
Ruff, Jacob [9 ]
Khan, Mojammel [2 ,7 ]
Kataoka, Kunimitsu [10 ]
McQueen, Tyrel [2 ,3 ,7 ]
Ji, Huiwen [1 ]
机构
[1] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
[2] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[4] Australian Nucl Sci & Technol Org ANSTO, Australian Ctr Neutron Scattering, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
[5] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[6] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA
[7] Johns Hopkins Univ, Dept Chem, Platform Accelerated Realizat Anal & Discovery Int, Baltimore, MD 21218 USA
[8] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[9] Cornell Univ, Cornell High Energy Synchrotron Source CHESS, Ithaca, NY 14853 USA
[10] Natl Inst Adv Ind Sci & Technol, AIST Tsukuba Ctr 5, Tsukuba, Japan
基金
美国国家科学基金会;
关键词
SOLID-ELECTROLYTE; SINGLE-CRYSTAL; LI5LA3M2O12; M; NEUTRON; LI7LA3ZR2O12; DIFFRACTION; AL; STABILITY; BATTERIES; TRANSPORT;
D O I
10.1039/d3ta04606k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a promising candidate for solid-state electrolytes in Li-ion batteries, the garnet-type Li-ion conductor series Li5+xLa3Nb2-xZrxO12 (LLNZO) (0 <= x <= 2) exhibits high ionic conductivity at room temperature. However, no previous single-crystal growth or characterization has been reported for LLNZO compositions 0 <= x <= 1. To obtain a complete understanding of the trend in the structure-property relationship in this class of materials, we used the floating zone (FZ) method to grow a single crystal of Li5.5La3Nb1.5Zr0.5O12 that was 4 mm in diameter and 10 mm in length. Using Laue neutron single-crystal diffraction, two distinct Li sites were observed: tetrahedral 24d and octahedral 96h sites. The maximum entropy method (MEM) based on neutron single-crystal diffraction data was used to map Li nuclear density and estimate that the bottleneck of Li transport exists between neighboring tetrahedral and octahedral sites, and that Li is delocalized between split octahedral sites. Room-temperature Li-ion conductivity in Li5.5La3Nb1.5Zr0.5O12 measured with electrochemical impedance spectroscopy (EIS) was 1.37 x 10(-4) S cm(-1). The Li migration activation energy was estimated to be 0.50 eV from EIS and 0.47 eV from dielectric relaxation measurements. The Li-ion jump attempt rate was estimated to be 1.47 x 10(12) Hz while the time scale of successful migration is 10(-7) to 10(-6) s.
引用
收藏
页码:21754 / 21766
页数:13
相关论文
共 50 条
  • [1] Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12
    Matsui, M.
    Takahashi, K.
    Sakamoto, K.
    Hirano, A.
    Takeda, Y.
    Yamamoto, O.
    Imanishi, N.
    DALTON TRANSACTIONS, 2014, 43 (03) : 1019 - 1024
  • [2] High Ionic Conductor Member of Garnet-Type Oxide Li6.5La3Zr1.5Ta0.5O12
    Kataoka, Kunimitsu
    Akimoto, Junji
    CHEMELECTROCHEM, 2018, 5 (18): : 2551 - 2557
  • [3] Energy landscape for Li-ion diffusion in the garnet-type solid electrolyte Li6.5La3Zr1.5Nb0.5O12(LLZO-Nb)
    Strangmüller, Stefan
    Avdeev, Maxim
    Baran, Volodymyr
    Walke, Patrick
    Kirchberger, Anna
    Nilges, Tom
    Senyshyn, Anatoliy
    Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences, 2022, 77 (06): : 453 - 462
  • [4] Energy landscape for Li-ion diffusion in the garnet-type solid electrolyte Li6.5La3Zr1.5Nb0.5O12 (LLZO-Nb)
    Strangmueller, Stefan
    Avdeev, Maxim
    Baran, Volodymyr
    Walke, Patrick
    Kirchberger, Anna
    Nilges, Tom
    Senyshyn, Anatoliy
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2022, 77 (06): : 453 - 462
  • [5] Phase formation of a garnet-type lithium-ion conductor Li7 - 3xAlxLa3Zr2O12
    Matsuda, Yasuaki
    Sakamoto, Kimie
    Matsui, Masaki
    Yamamoto, Osamu
    Takeda, Yasuo
    Imanishi, Nobuyuki
    SOLID STATE IONICS, 2015, 277 : 23 - 29
  • [6] Crystal Chemistry and Stability of "Li7La3Zr2O12" Garnet: A Fast Lithium-Ion Conductor
    Geiger, Charles A.
    Alekseev, Evgeny
    Lazic, Biljana
    Fisch, Martin
    Armbruster, Thomas
    Langner, Ramona
    Fechtelkord, Michael
    Kim, Namjun
    Pettke, Thomas
    Weppner, Werner
    INORGANIC CHEMISTRY, 2011, 50 (03) : 1089 - 1097
  • [7] Fast lithium ion conduction in garnet-type Li7La3Zr2O12
    Murugan, Ramaswamy
    Thangadurai, Venkataraman
    Weppner, Werner
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) : 7778 - 7781
  • [8] Li-ion conductivity and crystal structure of garnet-type Li6.5La3M1.5Ta0.5O12 (M = Hf, Sn) oxides
    Hamao, Naoki
    Kataoka, Kunimitsu
    Akimoto, Junji
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2017, 125 (04) : 272 - 275
  • [9] Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries
    Yoshima, Kazuomi
    Harada, Yasuhiro
    Takami, Norio
    JOURNAL OF POWER SOURCES, 2016, 302 : 283 - 290
  • [10] Low-Temperature Sintering of a Garnet-Type Li6.5La3Zr1.5Ta0.5O12 Solid Electrolyte and an All-Solid-State Lithium-Ion Battery
    Akao, Tadayoshi
    Nagai, Hideaki
    Kataoka, Kunimitsu
    Akimoto, Junji
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (15) : 18973 - 18981