Characterization of Asymmetric Gap-Engineered Josephson Junctions and 3D Transmon Qubits

被引:1
|
作者
Steffen, Zach [1 ,2 ]
Dutta, S. K. [3 ]
Wang, Haozhi [1 ,2 ]
Li, Kungang [3 ]
Huang, Yizhou [1 ,2 ]
Huang, Yi-Hsiang [2 ]
Mathur, Advait [1 ,2 ]
Wellstood, F. C. [3 ]
Palmer, B. S. [1 ,2 ]
机构
[1] Univ Maryland, Quantum Mat Ctr, College Pk, MD 20742 USA
[2] Lab Phys Sci, College Pk, MD 20740 USA
[3] Univ Maryland, Quantum Mat Ctr, College Pk, MD 20742 USA
关键词
Junctions; Qubit; Josephson junctions; Electrodes; Temperature measurement; Voltage measurement; Current measurement; Transmon; qubit; gap-engineering; quantum computing; ALUMINUM;
D O I
10.1109/TASC.2023.3247987
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have fabricated and characterized asymmetric gap-engineered junctions and transmon devices. To create Josephson junctions with asymmetric gaps, Ti was used to proximitize and lower the superconducting gap of the Al counter-electrode. DC IV measurements of these small, proximitized Josephson junctions show a reduced gap and larger excess current for voltage biases below the superconducting gap when compared to standard Al/AlOx/Al junctions. The energy relaxation time constant for an Al/AlOx/Al/Ti 3D transmon was T-1 = 1 mu s, over two orders of magnitude shorter than the measured T-1 = 134 mu s of a standard Al/AlOx/Al 3D transmon. Intentionally adding disorder between the Al and Ti layers reduces the proximity effect and subgap current while increasing the relaxation time to T-1 = 32 mu s.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Fast flux control of 3D transmon qubits using a magnetic hose
    Gargiulo, O.
    Oleschko, S.
    Prat-Camps, J.
    Zanner, M.
    Kirchmair, G.
    APPLIED PHYSICS LETTERS, 2021, 118 (01)
  • [2] Reducing surface loss in 3D microwave copper cavities for superconducting transmon qubits
    Bogorin, Daniela F.
    Ware, Matthew
    McClure, D. T.
    Sorokanich, Stephen
    Plourde, B. L. T.
    2013 IEEE 14TH INTERNATIONAL SUPERCONDUCTIVE ELECTRONICS CONFERENCE (ISEC), 2013,
  • [3] Analytical Quantum Full-Wave Solution of Transmon Qubits in a 3D Waveguide Cavity
    Moon, Soomin
    Roth, Thomas E.
    2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), INC-USNC-URSI 2024 - Proceedings, 2024,
  • [4] Analytical Quantum Full-Wave Solution of Transmon Qubits in a 3D Waveguide Cavity
    Moon, Soomin
    Roth, Thomas E.
    2024 IEEE INC-USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2024, : 123 - 123
  • [5] Nonequilibrium regimes for quasiparticles in superconducting qubits with gap-asymmetric junctions
    Marchegiani, Giampiero
    Catelani, Gianluigi
    COMMUNICATIONS PHYSICS, 2025, 8 (01):
  • [6] Gap junctions are required for activation of the 3D organizer in Ilyanassa
    Nakamoto, Ayaki
    Nagy, Lisa M.
    DEVELOPMENTAL BIOLOGY, 2006, 295 (01) : 450 - 450
  • [7] Selfconsistent 3D model of SN-N-NS Josephson junctions
    Bosboom, V
    Van der Vegt, J. J. W.
    Kupriyanov, M. Yu
    Golubov, A. A.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2021, 34 (11):
  • [8] Characterization of a Transmon Qubit in a 3D Cavity for Quantum Machine Learning and Photon Counting
    D'Elia, Alessandro
    Alfakes, Boulos
    Alkhazaleh, Anas
    Banchi, Leonardo
    Beretta, Matteo
    Carrazza, Stefano
    Chiarello, Fabio
    Di Gioacchino, Daniele
    Giachero, Andrea
    Henrich, Felix
    Komnang, Alex Stephane Piedjou
    Ligi, Carlo
    Maccarrone, Giovanni
    Macucci, Massimo
    Palumbo, Emanuele
    Pasquale, Andrea
    Piersanti, Luca
    Ravaux, Florent
    Rettaroli, Alessio
    Robbiati, Matteo
    Tocci, Simone
    Gatti, Claudio
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [9] Characterization of HTS SFQ circuits using interface-engineered Josephson junctions
    Saitoh, K
    Soutome, Y
    Fukazawa, T
    Tarutani, Y
    Takagi, K
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11 (01) : 791 - 794
  • [10] Spontaneous currents in Josephson junctions between unconventional superconductors and d-wave qubits -: (Review)
    Kolesnichenko, YA
    Omelyanchouk, AN
    Zagoskin, AM
    LOW TEMPERATURE PHYSICS, 2004, 30 (7-8) : 535 - 553