Effect of wall roughness on flame acceleration and deflagration-to-detonation transition in a narrow channel

被引:10
|
作者
Zhao, Mingbin [1 ]
Liu, Dandan [1 ]
Li, Min [1 ]
Xiao, Huahua [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230027, Anhui Province, Peoples R China
关键词
Hydrogen -air mixture; Narrow channel; Wall roughness; Deflagration-to-detonation; transition; Numerical simulation; VELOCITY FLUCTUATION; BLOCKAGE RATIO; HYDROGEN; PROPAGATION; DDT; BOUNDARY; LIMITS; MECHANISM; OBSTACLES; DYNAMICS;
D O I
10.1016/j.ijhydene.2023.05.198
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Numerical simulations are conducted to investigate the effect of wall roughness on flame acceleration (FA), deflagration-to-detonation transition (DDT), and detonation propagation in a narrow channel filled with stoichiometric hydrogen-air mixture. The wall roughness is determined by the element height h relative to the pipe diameter d and can be described using a dimensionless number Ra 1/4 2h/d. A high-order numerical algorithm is employed to solve the Navier-Stokes equations on an adaptive mesh. The results show that the roughness enhances the effect of boundary layer and promotes FA and DDT. In channels with small roughness (Ra<0.1), detonation is not observed. Flame instabilities are caused by the interaction between the flame surfaces and reflected waves from the sidewalls, wrinkling of the flame front, leading to additional flame acceleration, and the production of intense pressure waves. In comparison, in channels with large roughness (Ra>0.1), vortices, shears, and even turbulence are produced in the cavity-like regions as leading shock passes over the elements. The mechanisms of the final detonation transition in the rough narrow channel are thought to be the formation of local hot spots arising from the multiple interactions of shocks with the roughness elements and viscous heating of unburned gas in the highly turbulent boundary layer.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:880 / 893
页数:14
相关论文
共 50 条
  • [1] Flame acceleration and deflagration-to-detonation transition in narrow channels with thin obstacles
    Huang, Jin
    Gao, Xiangyu
    Wang, Cheng
    MODERN PHYSICS LETTERS B, 2018, 32 (29):
  • [2] Effect of Heat-Loss Boundary on Flame Acceleration and Deflagration-to-Detonation Transition in Narrow Channels
    Wang, Cheng
    Zhao, Yongyao
    Han, Wenhu
    COMBUSTION SCIENCE AND TECHNOLOGY, 2017, 189 (09) : 1605 - 1623
  • [3] Flame acceleration in channels with obstacles in the deflagration-to-detonation transition
    Valiev, Damir
    Bychkov, Vitaly
    Akkerman, V'yacheslav
    Law, Chung K.
    Eriksson, Lars-Erik
    COMBUSTION AND FLAME, 2010, 157 (05) : 1012 - 1021
  • [4] Flame acceleration and deflagration-to-detonation transition in a channel with continuous triangular obstacles: Effect of equivalence ratio
    Li, Xiaoxi
    Dong, Jizhou
    Jin, Kaiqiang
    Duan, Qiangling
    Sun, Jinhua
    Li, Min
    Xiao, Huahua
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 167 : 576 - 591
  • [5] GAS COMPRESSION MODERATES FLAME ACCELERATION IN DEFLAGRATION-TO-DETONATION TRANSITION
    Bychkov, Vitaly
    Valiev, Damir
    Akkerman, V'yacheslav
    Law, Chung K.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2012, 184 (7-8) : 1066 - 1079
  • [6] The influence of initial temperature on flame acceleration and deflagration-to-detonation transition
    Ciccarelli, G
    Boccio, JL
    Ginsberg, T
    Tagawa, H
    TWENTY-SIXTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, 1996, : 2973 - 2979
  • [7] Flame front dynamics, shape and structure on acceleration and deflagration-to-detonation transition
    Krivosheyev, Pavel
    Novitski, Alexey
    Penyazkov, Oleg
    ACTA ASTRONAUTICA, 2023, 204 : 692 - 704
  • [8] Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels
    Wang, Cheng
    Zhao, Yongyao
    Zhang, Bo
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2016, 43 : 120 - 126
  • [9] Effect of hydrogen concentration distribution on flame acceleration and deflagration-to-detonation transition in staggered obstacle-laden channel
    Zhao, Xinyu
    Wang, Jiabao
    Gao, Longkun
    Pan, Jianfeng
    Zhu, Yuejin
    PHYSICS OF FLUIDS, 2023, 35 (01)
  • [10] Flame acceleration and deflagration-to-detonation transition in narrow channels filled with stoichiometric hydrogen-air mixture
    Liu, Dandan
    Liu, Zhaorong
    Xiao, Huahua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (20) : 11052 - 11067