Longitudinal dynamic contrast-enhanced MRI radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer

被引:2
|
作者
Panthi, Bikash [1 ]
Mohamed, Rania M. [2 ]
Adrada, Beatriz E. [2 ]
Boge, Medine [2 ,3 ]
Candelaria, Rosalind P. [2 ]
Chen, Huiqin [4 ]
Hunt, Kelly K. [5 ]
Huo, Lei [6 ]
Hwang, Ken-Pin [1 ]
Korkut, Anil [7 ]
Lane, Deanna L. [2 ]
Le-Petross, Huong C. [2 ]
Leung, Jessica W. T. [2 ]
Litton, Jennifer K. [8 ]
Pashapoor, Sanaz [2 ]
Perez, Frances [2 ]
Son, Jong Bum [1 ]
Sun, Jia [4 ]
Thompson, Alastair [9 ]
Tripathy, Debu [8 ]
Valero, Vicente [8 ]
Wei, Peng [4 ]
White, Jason [8 ]
Xu, Zhan [1 ]
Yang, Wei [2 ]
Zhou, Zijian [1 ]
Yam, Clinton [8 ]
Rauch, Gaiane M. [2 ,10 ]
Ma, Jingfei [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Breast Imaging, Houston, TX USA
[3] Koc Univ Hosp, Istanbul, Turkiye
[4] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Breast Surg Oncol, Houston, TX USA
[6] Univ Texas MD Anderson Canc Ctr, Dept Pathol, Houston, TX USA
[7] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX USA
[8] Univ Texas MD Anderson Canc Ctr, Dept Breast Med Oncol, Houston, TX USA
[9] Baylor Coll Med, Dept Surg, Houston, TX USA
[10] Univ Texas MD Anderson Canc Ctr, Dept Abdominal Imaging, Houston, TX USA
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
关键词
triple-negative breast cancer; dynamic contrast-enhanced MRI; neoadjuvant systemic therapy; radiomic analysis; pathologic complete response; DCE-MRI; CHEMOTHERAPY; ULTRASOUND;
D O I
10.3389/fonc.2023.1264259
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Early prediction of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) patients could help oncologists select individualized treatment and avoid toxic effects associated with ineffective therapy in patients unlikely to achieve pathologic complete response (pCR). The objective of this study is to evaluate the performance of radiomic features of the peritumoral and tumoral regions from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired at different time points of NAST for early treatment response prediction in TNBC. This study included 163 Stage I-III patients with TNBC undergoing NAST as part of a prospective clinical trial (NCT02276443). Peritumoral and tumoral regions of interest were segmented on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST. Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix (GLCM) features were calculated. Area under the receiver operating characteristic curve (AUC) and Wilcoxon rank sum test were used to determine the most predictive features. Multivariate logistic regression models were used for performance assessment. Pearson correlation was used to assess intrareader and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26 testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75 for training and testing sets. The Pearson correlation showed significant correlation between readers. In conclusion, Radiomic features from DCE-MRI are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic models based on these features can improve early noninvasive treatment response prediction in TNBC patients undergoing NAST.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer
    Mohamed, Rania M.
    Panthi, Bikash
    Adrada, Beatriz E.
    Boge, Medine
    Candelaria, Rosalind P.
    Chen, Huiqin
    Guirguis, Mary S.
    Hunt, Kelly K.
    Huo, Lei
    Hwang, Ken-Pin
    Korkut, Anil
    Litton, Jennifer K.
    Moseley, Tanya W.
    Pashapoor, Sanaz
    Patel, Miral M.
    Reed, Brandy
    Scoggins, Marion E.
    Son, Jong Bum
    Thompson, Alastair
    Tripathy, Debu
    Valero, Vicente
    Wei, Peng
    White, Jason
    Whitman, Gary J.
    Xu, Zhan
    Yang, Wei
    Yam, Clinton
    Ma, Jingfei
    Rauch, Gaiane M.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Functional Tumor Volume by Fast Dynamic Contrast-Enhanced MRI for Predicting Neoadjuvant Systemic Therapy Response in Triple-Negative Breast Cancer
    Musall, Benjamin C.
    Abdelhafez, Abeer H.
    Adrada, Beatriz E.
    Candelaria, Rosalind P.
    Mohamed, Rania M. M.
    Boge, Medine
    Le-Petross, Huong
    Arribas, Elsa
    Lane, Deanna L.
    Spak, David A.
    Leung, Jessica W. T.
    Hwang, Ken-Pin
    Son, Jong Bum
    Elshafeey, Nabil A.
    Mahmoud, Hagar S.
    Wei, Peng
    Sun, Jia
    Zhang, Shu
    White, Jason B.
    Ravenberg, Elizabeth E.
    Litton, Jennifer K.
    Damodaran, Senthil
    Thompson, Alastair M.
    Moulder, Stacy L.
    Yang, Wei T.
    Pagel, Mark D.
    Rauch, Gaiane M.
    Ma, Jingfei
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (01) : 251 - 260
  • [3] Radiomic phenotypes from dynamic contrast-enhanced MRI (DCE-MRI) parametric maps for early prediction of response to neoadjuvant systemic therapy (NAST) in triple negative breast cancer (TNBC) patients
    Elshafeey, Nabil
    Adrada, Beatriz E.
    Candelaria, Rosalind P.
    Abdelhafez, Abeer H.
    Musall, Benjamin C.
    Sun, Jia
    Boge, Medine
    Mohamed, Rania M. M.
    Mahmoud, Hagar S.
    Son, Jong Bum
    Kotrosou, Aikaterini
    Zhang, Shu
    Leung, Jessica
    Lane, Deanna
    Scoggins, Marion
    Spak, David
    Arribas, Elsa
    Santiago, Lumarie
    Whitman, Gary J.
    Le-Petross, Huong T.
    Moseley, Tanya W.
    White, Jason B.
    Ravenberg, Elizabeth
    Hwang, Ken-Pin
    Wei, Peng
    Litton, Jennifer K.
    Huo, Lei
    Tripathy, Debu
    Valero, Vicente
    Thompson, Alastair M.
    Moulder, Stacy
    Yang, Wei T.
    Pagel, Mark D.
    Ma, Jingfei
    Rauch, Gaiane M.
    [J]. CANCER RESEARCH, 2021, 81 (04)
  • [4] Editorial for "Functional Tumor Volume by Fast Dynamic Contrast-Enhanced MRI for Predicting Neoadjuvant Systemic Therapy Response in Triple-Negative Breast Cancer"
    Pineda, Federico D.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (01) : 261 - 262
  • [5] Longitudinal DCE-MRI Radiomic Models for Early Prediction of Response to Neoadjuvant Systemic Therapy (NAST) in Triple Negative Breast Cancer (TNBC) Patients
    Panthi, Bikash
    Mohamed, Rania M.
    Adrada, Beatriz
    Candelaria, Rosalind
    Guirguis, Mary S.
    Yang, Wei
    Boge, Medine
    Patel, Miral
    Elshafeey, Nabil
    Pashapoor, Sanaz
    Zhou, Zijian
    Son, Jong Bum
    Hwang, Ken-Pin
    Le-Petross, H. T. Carisa
    Leung, Jessica
    Scoggins, Marion E.
    Whitman, Gary J.
    Xu, Zhan
    Lane, Deanna L.
    Moseley, Tanya
    Perez, Frances
    White, Jason
    Ravenberg, Elizabeth
    Clayborn, Alyson
    Pagel, Mark
    Chen, Huiqin
    Sun, Jia
    Wei, Peng
    Thompson, Alastair M.
    Moulder, Stacy
    Korkut, Anil
    Huo, Lei
    Hunt, Kelly K.
    Litton, Jennifer K.
    Valero, Vicente
    Tripathy, Debu
    Yam, Clinton
    Ma, Jingfei
    Rauch, Gaiane
    [J]. CANCER RESEARCH, 2023, 83 (05)
  • [6] Assessment of Response to Neoadjuvant Systemic Treatment in Triple-Negative Breast Cancer Using Functional Tumor Volumes from Longitudinal Dynamic Contrast-Enhanced MRI
    Panthi, Bikash
    Adrada, Beatriz E.
    Candelaria, Rosalind P.
    Guirguis, Mary S.
    Yam, Clinton
    Boge, Medine
    Chen, Huiqin
    Hunt, Kelly K.
    Huo, Lei
    Hwang, Ken-Pin
    Korkut, Anil
    Lane, Deanna L.
    Le-Petross, Huong C.
    Leung, Jessica W. T.
    Litton, Jennifer K.
    Mohamed, Rania M.
    Musall, Benjamin C.
    Pashapoor, Sanaz
    Patel, Miral M.
    Perez, Frances
    Son, Jong Bum
    Thompson, Alastair
    Valero, Vicente
    Wei, Peng
    White, Jason
    Xu, Zhan
    Pinsky, Lawrence
    Tripathy, Debu
    Yang, Wei
    Ma, Jingfei
    Rauch, Gaiane M.
    [J]. CANCERS, 2023, 15 (04)
  • [7] Predictive Clinicopathologic and Dynamic Contrast-Enhanced MRI Findings for Tumor Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer
    Eom, Hye-Joung
    Cha, Joo Hee
    Choi, Woo Jung
    Chae, Eun Young
    Shin, Hee Jung
    Kim, Hak Hee
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 208 (06) : W225 - W230
  • [8] 4D Radiomics in Dynamic Contrast-Enhanced MRI: Prediction of Pathological Complete Response and Systemic Recurrence in Triple-Negative Breast Cancer
    Caballo, Marco
    Sanderink, Wendelien B. G.
    Han, Luyi
    Gao, Yuan
    Athanasiou, Alexandra
    Mann, Ritse M.
    [J]. MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [9] Evaluation of contrast-enhanced ultrasonography for early prediction of response to neoadjuvant chemotherapy in triple negative breast cancer
    Masumoto, N.
    Kadoya, T.
    Murakami, C.
    Gouda, N.
    Sasada, S.
    Emi, A.
    Haruta, R.
    Kataoka, T.
    Okada, M.
    [J]. CANCER RESEARCH, 2017, 77
  • [10] Dynamic contrast-enhanced MRI-based biomarkers of therapeutic response in triple-negative breast cancer
    Golden, Daniel I.
    Lipson, Jafi A.
    Telli, Melinda L.
    Ford, James M.
    Rubin, Daniel L.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (06) : 1059 - 1066