Enabling adaptive analytics at the edge with the Bi-Rex Big Data platform

被引:12
|
作者
Venanzi, Riccardo [3 ]
Dahdal, Simon [2 ]
Solimando, Michele [3 ]
Campioni, Lorenzo [2 ]
Cavalucci, Alberto [3 ]
Govoni, Marco [1 ,2 ]
Tortonesi, Mauro [2 ]
Foschini, Luca [3 ]
Attana, Loredana [1 ]
Tellarini, Matteo [4 ]
Stefanelli, Cesare [2 ]
机构
[1] Bonfiglioli Riduttori, Via Cav Clementino Bonfiglioli 1, I-40012 Calderara Di Reno, BO, Italy
[2] Univ Ferrara, Distributed Syst Res Grp, Via Saragat 1, I-44122 Ferrara, Italy
[3] Univ Bologna, Dept Comp Sci & Engn, Viale Risorgimento 2, I-40126 Bologna, Italy
[4] SACMI, Via Selice Provinciale 17-A, I-40026 Imola, BO, Italy
关键词
Zero defect manufacturing; Industry; 4; 0; Big data; Edge computing; MLOps; Data -driven applications; Machine learning; INDUSTRY; 4.0;
D O I
10.1016/j.compind.2023.103876
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Zero Defect Manufacturing (ZDM) is an emergent and disruptive paradigm that aims to optimize industrial process efficiency and sustainability by leveraging innovative and sophisticated data-driven approaches. It is a technology intensive concept that has the ambition of achieving and maintaining "first-time-right'' quality goals in spite of varying processes and input material. As a result, developing ZDM applications might become overwhelming for small enterprises due to the multitude of diverse platform, the lack of know-how, and the need to adapt general purpose solutions to meet their needs. The Big Data Innovation and Research Excellence (Bi-Rex) is an Italian consortium that aims to accelerate the industrial innovation process of small enterprises. Within this consortium we developed a Big Data platform that enables adaptive analytics at the IT/OT boundary by leveraging innovative solutions for the safe and automatic deployment of data-driven apps, using MLOps and DevOps techniques and technologies, and evaluated it in real use cases provided by the world leading industrial partners involved in the project.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Stratosphere platform for big data analytics
    Alexander Alexandrov
    Rico Bergmann
    Stephan Ewen
    Johann-Christoph Freytag
    Fabian Hueske
    Arvid Heise
    Odej Kao
    Marcus Leich
    Ulf Leser
    Volker Markl
    Felix Naumann
    Mathias Peters
    Astrid Rheinländer
    Matthias J. Sax
    Sebastian Schelter
    Mareike Höger
    Kostas Tzoumas
    Daniel Warneke
    [J]. The VLDB Journal, 2014, 23 : 939 - 964
  • [2] Big Data Platform for Educational Analytics
    Munshi, Amr A.
    Alhindi, Ahmad
    [J]. IEEE ACCESS, 2021, 9 : 52883 - 52890
  • [3] The Stratosphere platform for big data analytics
    Alexandrov, Alexander
    Bergmann, Rico
    Ewen, Stephan
    Freytag, Johann-Christoph
    Hueske, Fabian
    Heise, Arvid
    Kao, Odej
    Leich, Marcus
    Leser, Ulf
    Markl, Volker
    Naumann, Felix
    Peters, Mathias
    Rheinlaender, Astrid
    Sax, Matthias J.
    Schelter, Sebastian
    Hoeger, Mareike
    Tzoumas, Kostas
    Warneke, Daniel
    [J]. VLDB JOURNAL, 2014, 23 (06): : 939 - 964
  • [4] Privacy-Preserving Deep Learning for Enabling Big Edge Data Analytics in Internet of Things
    Guo, Mnigming
    Pissinou, Niki
    Iyengar, S. S.
    [J]. 2019 TENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2019,
  • [5] Enabling Streaming Analytics in Satellite Edge Computing via Timely Evaluation of Big Data Queries
    Xu, Zichuan
    Xu, Guangyuan
    Wang, Hao
    Liang, Weifa
    Xia, Qiufen
    Wang, Shangguang
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (01) : 105 - 122
  • [6] Bringing AI to BI: Enabling Visual Analytics of Unstructured Data in a Modern Business Intelligence Platform
    Edge, Darren
    Larson, Jonathan
    White, Christopher
    [J]. CHI 2018: EXTENDED ABSTRACTS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2018,
  • [7] A Big Data platform for smart meter data analytics
    Wilcox, Tom
    Jin, Nanlin
    Flach, Peter
    Thumim, Joshua
    [J]. COMPUTERS IN INDUSTRY, 2019, 105 : 250 - 259
  • [8] Enabling Strategies for Big Data Analytics in Hybrid Infrastructures
    Anjos, Julio C. S.
    Matteussi, Kassiano J.
    De Souza, Paulo R. R.
    Geyer, Claudio F. R.
    Veith, Alexandre S.
    Fedak, Gilles
    Victoria Barbosa, Jorge Luis
    [J]. PROCEEDINGS 2018 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2018, : 869 - 876
  • [9] Towards a 'Big' Health Data Analytics Platform
    Cha, Sangwhan
    Abusharekh, Ashraf
    Abidi, Syed S. R.
    [J]. 2015 IEEE FIRST INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2015), 2015, : 233 - 241
  • [10] Enabling Edge Analytics of IoT Data: the Case of LoRaWAN
    Truong, Hong-Linh
    [J]. 2018 GLOBAL INTERNET OF THINGS SUMMIT (GIOTS), 2018, : 13 - 18