Comparison of Encoder-Decoder Networks for Soccer Field Segmentation

被引:0
|
作者
Guimaraes, Otavio H. R. [1 ]
Maximo, Marcos R. O. A. [2 ]
Parente de Oliveira, Jose Maria [3 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, Route Saclay, F-91128 Palaiseau, Ile De France, France
[2] Aeronaut Inst Technol, Comp Sci Div, Autonomous Computat Syst Lab, Praca Marechal Eduardo Gomes 50, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[3] Aeronaut Inst Technol, Comp Sci Div, Praca Marechal Eduardo Gomes 50, BR-12228900 Sao Jose Dos Campos, SP, Brazil
关键词
neural networks; CNN; encoder-decoder; semantic segmentation; robot soccer;
D O I
10.1109/LARS/SBR/WRE59448.2023.10333063
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks consist of state-of-the-art models used for the solution of computer vision problems. This paper contributes by evaluating the efficiency of several encoder-decoder neural networks, trained to perform the segmentation of the soccer field in Humanoid KidSize Robot Soccer competitions. To compare the efficiency of several encoders, a total of fourteen neural network models, based on the U-Net and SegNet architectures, were tested and compared in terms of accuracy, cost function value, IoU, and average inference time. Based on that, the networks based on U-Net that utilized the MobileNetv3Small or the ResNet18 for the encoding process were found to be the optimal solution among the considered alternatives to segment the soccer field.
引用
收藏
页码:496 / 501
页数:6
相关论文
共 50 条
  • [1] Encoder-decoder network with RMP for tongue segmentation
    Kusakunniran, Worapan
    Borwarnginn, Punyanuch
    Karnjanapreechakorn, Sarattha
    Thongkanchorn, Kittikhun
    Ritthipravat, Panrasee
    Tuakta, Pimchanok
    Benjapornlert, Paitoon
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (05) : 1193 - 1207
  • [2] Interpretable Transformations with Encoder-Decoder Networks
    Worrall, Daniel E.
    Garbin, Stephan J.
    Turmukhambetov, Daniyar
    Brostow, Gabriel J.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5737 - 5746
  • [3] Encoder-decoder network with RMP for tongue segmentation
    Worapan Kusakunniran
    Punyanuch Borwarnginn
    Sarattha Karnjanapreechakorn
    Kittikhun Thongkanchorn
    Panrasee Ritthipravat
    Pimchanok Tuakta
    Paitoon Benjapornlert
    [J]. Medical & Biological Engineering & Computing, 2023, 61 : 1193 - 1207
  • [4] Encoder-Decoder With Cascaded CRFs for Semantic Segmentation
    Ji, Jian
    Shi, Rui
    Li, Sitong
    Chen, Peng
    Miao, Qiguang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1926 - 1938
  • [5] Lung Field Segmentation in Chest X-ray Images Using Superpixel Resizing and Encoder-Decoder Segmentation Networks
    Lee, Chien-Cheng
    So, Edmund Cheung
    Saidy, Lamin
    Wang, Min-Ju
    [J]. BIOENGINEERING-BASEL, 2022, 9 (08):
  • [6] Convolutional encoder-decoder networks for pixel-wise ear detection and segmentation
    Emersic, Ziga
    Gabriel, Luka L.
    Struc, Vitomir
    Peer, Peter
    [J]. IET BIOMETRICS, 2018, 7 (03) : 175 - 184
  • [7] Optimizing the Hyperparameters of Fully Convolutional Encoder-Decoder Networks for SAR Image Segmentation
    Liu, Yuanyue
    Zhao, Jin
    Fan, Jianchao
    Wang, Jun
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [8] Concrete roadway crack segmentation using encoder-decoder networks with range images
    Zhou, Shanglian
    Song, Wei
    [J]. AUTOMATION IN CONSTRUCTION, 2020, 120
  • [9] An automated choroid segmentation approach using transfer learning and encoder-decoder networks
    Suthaharan, Shan
    Chhablani, Gunjan
    Vupparaboina, Kiran Kumar
    Sahel, Jose-Alain
    Dansingani, Kunal K.
    Chhablani, Jay
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [10] SCNet: A Simplified Encoder-Decoder CNN for Semantic Segmentation
    Yasrab, Robail
    Gu, Naijie
    Zhang, Xiaoci
    [J]. PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2016, : 785 - 789