CoFe-loaded P, N co-doped carbon foam derived from petroleum pitch waste: An efficient electrocatalyst for oxygen evolution reaction

被引:4
|
作者
Gebreslase, Gebrehiwet Abrham [1 ]
Sebastian, David
Martinez-Huerta, Maria Victoria [2 ]
Tsoncheva, Tanya [3 ]
Tsyntsarski, Boiko [3 ]
Georgiev, Georgi [3 ]
Lazaro, Maria Jesus [1 ]
机构
[1] CSIC, Inst Carboquim, Miguel Luesma Castan 4, Zaragoza 50018, Spain
[2] CSIC, Inst Catalisis & Petroleoquim, Marie Curie 2, Madrid 28049, Spain
[3] Bulgarian Acad Sci, Ctr Phytochem, Inst Organ Chem, Acad G Bontchev,Block 9, Sofia 1113, Bulgaria
关键词
Electrocatalysts; Oxygen evolution reaction; CoFe; Carbon foam; And P; N co-doped carbon foam; Petroleum pitch; BIFUNCTIONAL ELECTROCATALYST; ELECTROCHEMICAL OXIDATION; HIGH-PERFORMANCE; ELECTRODE; REDUCTION; CATALYSTS; GRAPHENE; HYDROGEN;
D O I
10.1016/j.cattod.2022.12.022
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Designing and developing affordable, high-performance, and stable electrocatalysts for oxygen evolution reaction (OER) is decisive for pragmatic water electrolysis to produce green hydrogen energy. In this work, we report cobalt and iron incorporated in phosphorus and nitrogen co-doped carbon foam (CF) derived from petroleum pitch as a promising electrocatalyst for alkaline OER. The P, N heteroatoms co-doped carbon foam (PN-CF) was first synthesized via thermo-chemical treatment of low-cost petroleum pitch in the presence of melamine (N source) and sodium hypophosphite (P source) precursors, followed by carbonization. Then, mono and bimetals of Co and Fe were impregnated into the as-prepared composite carbon foam (PN-CF) substrate, followed by further carbonization. Among the different catalysts, the bimetallic CoFe integrated with the PN-CF (CoFe@PN-CF) reveals an outstanding electrocatalytic activity (320 mV overpotential at j = 10 mA center dot cm(-2)), low Tafel slope (48 mV center dot dec(-1)), and excellent durability during OER measurement in 1 M KOH aqueous solution. The superb performance of the CoFe@PN-CF catalyst stems from the synergetic effect of the bimetals confined on phosphorus and nitrogen co-doped carbon foam support with high specific surface area, highly porous structure, and formation of graphitic domains, which enhances the electrical conductivity. This work sheds light on the potential for valorizing petroleum pitch and provides a facile synthesis approach to synthesizing a low-cost, high-performance, and durable electrocatalyst for alkaline OER.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Chitosan Waste-Derived Co and N Co-doped Carbon Electrocatalyst for Efficient Oxygen Reduction Reaction
    Xie, Shilei
    Huang, Senchuan
    Wei, Wenjie
    Yang, Xinzhe
    Liu, Yi
    Lu, Xihong
    Tong, Yexiang
    CHEMELECTROCHEM, 2015, 2 (11): : 1806 - 1812
  • [2] Waste paper derived Co, N co-doped carbon as an efficient electrocatalyst for hydrogen evolution
    Hao Sun
    Lian Xue
    Ying Shi
    Jie Dong
    Qiang Wu
    Weifeng Yao
    Reaction Kinetics, Mechanisms and Catalysis, 2021, 132 : 1137 - 1150
  • [3] Waste paper derived Co, N co-doped carbon as an efficient electrocatalyst for hydrogen evolution
    Sun, Hao
    Xue, Lian
    Shi, Ying
    Dong, Jie
    Wu, Qiang
    Yao, Weifeng
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2021, 132 (02) : 1137 - 1150
  • [4] A Defect-rich N, P Co-doped Carbon Foam as Efficient Electrocatalyst toward Oxygen Reduction Reaction
    Yang, Maomao
    Shu, Xinxin
    Zhang, Jintao
    CHEMCATCHEM, 2020, 12 (16) : 4105 - 4111
  • [5] ZnS, Fe, and P co-doped N enriched carbon derived from MOFs as efficient electrocatalyst for oxygen reduction reaction
    Zhao, Liping
    Wang, Anqi
    Yang, Ailin
    Zuo, Guihong
    Dai, Jun
    Zheng, Youjin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31863 - 31870
  • [6] Carbon skeleton doped with Co, N, S and P as efficient electrocatalyst for oxygen evolution reaction
    Cao, Jiamei
    Feng, Yongqiang
    Liu, Baoyong
    Li, Hongguang
    SCIENCE CHINA-MATERIALS, 2018, 61 (05) : 686 - 696
  • [7] Intumescent flame retardant-derived P,N co-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction
    Wang, Yinling
    Zhang, Xuemei
    Li, Anna
    Li, Maoguo
    CHEMICAL COMMUNICATIONS, 2015, 51 (79) : 14801 - 14804
  • [8] Fe-N Co-doped Porous Carbon Derived from Ionic Liquids as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
    Liu, Yong
    Li, Shenshen
    Li, Xiying
    Mao, Liqun
    Liu, Fujian
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (46) : 15638 - 15646
  • [9] Biomass-Derived Mo2C@N, P Co-Doped Carbon as an Efficient Electrocatalyst for Hydrogen Evolution Reaction
    Yin, Xing
    Shao, Junjie
    Zhang, Wenbiao
    Gao, Qingsheng
    ENERGY & FUELS, 2022, 36 (18) : 11261 - 11268
  • [10] Fe/N co-doped mesoporous carbon nanomaterial as an efficient electrocatalyst for oxygen reduction reaction
    He, Chuansheng
    Zhang, Tingting
    Sun, Fengzhan
    Li, Changqing
    Lin, Yuqing
    ELECTROCHIMICA ACTA, 2017, 231 : 549 - 556