An Effective Algorithm for Pricing Option with Mixed-Exponential Jump and Double Stochastic Volatility

被引:0
|
作者
Zhang, Sumei [1 ]
Liu, Panni [1 ]
Liao, Zihao [1 ]
机构
[1] Xian Univ Post & Telecommun, Xian 710121, Peoples R China
关键词
Pricing algorithm; European option; Jump risk; Stochastic volatility; FINITE-DIFFERENCE METHOD; MONTE-CARLO;
D O I
10.1007/978-3-031-20738-9_155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to combine the jump risk and stochastic volatility risk of actual asset price in the event of emergencies, the paper proposes a double stochastic volatility mixed-exponential jump-diffusion model by introducing mixed-exponential jump in the double Heston model. This paper obtains the characteristic function of logarithmic asset prices under the proposed model through Ito's formula and stochastic integration. Combing Fourier cosine series and fast Fourier transform algorithm, this paper proposes a new pricing algorithm for European options. Our algorithm truncates the integral interval of option pricing, expands the density function by Fourier COS expansion in the truncated interval, and transforms the density function into characteristic function by Fourier transform. The numerical results show that our algorithm is effective and has stable convergence for pricing European options.
引用
收藏
页码:1433 / 1440
页数:8
相关论文
共 50 条
  • [1] Option Pricing Under a Mixed-Exponential Jump Diffusion Model
    Cai, Ning
    Kou, S. G.
    [J]. MANAGEMENT SCIENCE, 2011, 57 (11) : 2067 - 2081
  • [2] Option pricing using the fast Fourier transform under the double exponential jump model with stochastic volatility and stochastic intensity
    Huang, Jiexiang
    Zhu, Wenli
    Ruan, Xinfeng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 152 - 159
  • [3] Option Pricing for Jump in Volatility and Stochastic Intensity
    Makate, Nonthiya
    Thongkamhaeng, Wasana
    Sengpanit, Amaraporn
    [J]. 2015 INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS (ICREM7), 2015, : 103 - 107
  • [4] Pricing turbo warrants under mixed-exponential jump diffusion model
    Yu, Jianfeng
    Xu, Weidong
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 451 : 490 - 501
  • [5] Option Pricing under Double Stochastic Volatility Model with Stochastic Interest Rates and Double Exponential Jumps with Stochastic Intensity
    Chang, Ying
    Wang, Yiming
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [6] Pricing double volatility barriers option under stochastic volatility
    Han, Yuecai
    Liu, Chunyang
    Song, Qingshuo
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2021, 93 (04) : 625 - 645
  • [7] A binomial option pricing model under stochastic volatility and jump
    Chang, CC
    Fu, HC
    [J]. CANADIAN JOURNAL OF ADMINISTRATIVE SCIENCES-REVUE CANADIENNE DES SCIENCES DE L ADMINISTRATION, 2001, 18 (03): : 192 - 203
  • [8] Option pricing under a double exponential jump diffusion model
    Kou, SG
    Wang, H
    [J]. MANAGEMENT SCIENCE, 2004, 50 (09) : 1178 - 1192
  • [9] STOCHASTIC VOLATILITY OPTION PRICING
    BALL, CA
    ROMA, A
    [J]. JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1994, 29 (04) : 589 - 607
  • [10] Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility
    Chang, Ying
    Wang, Yiming
    Zhang, Sumei
    [J]. MATHEMATICS, 2021, 9 (02) : 1 - 10