Learning Robust Point Representation for 3D Non-Rigid Shape Retrieval

被引:0
|
作者
Wu, Hao [1 ]
Fang, Lincong [2 ]
Yu, Qian [3 ,4 ]
Yang, Chengzhuan [5 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
[2] Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Peoples R China
[3] Fudan Univ, Sch Comp Sci, Shanghai 200438, Peoples R China
[4] Jiangsu Univ Technol, Sch Comp Engn, Changzhou 213001, Peoples R China
[5] Zhejiang Normal Univ, Sch Comp Sci & Technol, Jinhua 321004, Peoples R China
关键词
Local point histogram; high-level point feature; shape descriptor; 3D non-rigid shape retrieval; CLASSIFICATION; DESCRIPTORS; RECOGNITION;
D O I
10.1109/TMM.2023.3323154
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Content-based 3D object retrieval is a challenging problem in computer vision and graphics, especially for non-rigid 3D shapes. This article proposes a multiview-based robust point representation approach for 3D non-rigid shape retrieval. First, we propose an efficient local descriptor called the local point histogram, which is robust to non-rigid changes in shape. Second, we encode local point histogram features into high-level point features (HPF) using Fisher vectors. Finally, we present an efficient feature fusion method that can further enhance the performance of 3D non-rigid shape retrieval. We extensively tested our approach on two benchmark 3D non-rigid shape datasets, including the SHREC2015 non-rigid shape and SHREC2015 canonical forms. Our method achieves 98.33% and 90.55% retrieval accuracy on the SHREC2015 non-rigid shape and SHREC2015 canonical forms datasets, surpassing previous state-of-the-art methods by nearly 2% and 7%, respectively. In addition, we further tested our method on the well-known 3D rigid shape dataset ModelNet, and the experimental results demonstrate that our method is also effective for 3D rigid shape retrieval. We also combine the proposed HPF shape features with deep convolutional features for the 3D rigid shape retrieval task, achieving a retrieval performance comparable to the prior state-of-the-art methods, which indicates a strong complementarity between HPF shape features and deep convolutional features.
引用
收藏
页码:4430 / 4444
页数:15
相关论文
共 50 条
  • [1] A comparison of methods for non-rigid 3D shape retrieval
    Lian, Zhouhui
    Godil, Afzal
    Bustos, Benjamin
    Daoudi, Mohamed
    Hermans, Jeroen
    Kawamura, Shun
    Kurita, Yukinori
    Lavoue, Guillaume
    Hien Van Nguyen
    Ohbuchi, Ryutarou
    Ohkita, Yuki
    Ohishi, Yuya
    Porikli, Fatih
    Reuter, Martin
    Sipiran, Ivan
    Smeets, Dirk
    Suetens, Paul
    Tabia, Hedi
    Vandermeulen, Dirk
    PATTERN RECOGNITION, 2013, 46 (01) : 449 - 461
  • [2] Shape Retrieval of Non-rigid 3D Human Models
    Pickup, D.
    Sun, X.
    Rosin, P. L.
    Martin, R. R.
    Cheng, Z.
    Lian, Z.
    Aono, M.
    Ben Hamza, A.
    Bronstein, A.
    Bronstein, M.
    Bu, S.
    Castellani, U.
    Cheng, S.
    Garro, V.
    Giachetti, A.
    Godil, A.
    Isaia, L.
    Han, J.
    Johan, H.
    Lai, L.
    Li, B.
    Li, C.
    Li, H.
    Litman, R.
    Liu, X.
    Liu, Z.
    Lu, Y.
    Sun, L.
    Tam, G.
    Tatsuma, A.
    Ye, J.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 120 (02) : 169 - 193
  • [3] Shape Retrieval of Non-rigid 3D Human Models
    D. Pickup
    X. Sun
    P. L. Rosin
    R. R. Martin
    Z. Cheng
    Z. Lian
    M. Aono
    A. Ben Hamza
    A. Bronstein
    M. Bronstein
    S. Bu
    U. Castellani
    S. Cheng
    V. Garro
    A. Giachetti
    A. Godil
    L. Isaia
    J. Han
    H. Johan
    L. Lai
    B. Li
    C. Li
    H. Li
    R. Litman
    X. Liu
    Z. Liu
    Y. Lu
    L. Sun
    G. Tam
    A. Tatsuma
    J. Ye
    International Journal of Computer Vision, 2016, 120 : 169 - 193
  • [4] DEEP SPARSE DICTIONARY-BASED REPRESENTATION FOR 3D NON-RIGID SHAPE RETRIEVAL
    Mohamed, Hela Haj
    Belaid, Samir
    Naanaa, Wady
    Ben Romdhane, Lotfi
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 1070 - 1077
  • [5] Stretching-robust Laplace Spectral Descriptor for Non-Rigid 3D Shape Retrieval
    Liu, Yusong
    Su, Zhixun
    Cao, Junjie
    Wang, Hui
    2014 5TH INTERNATIONAL CONFERENCE ON DIGITAL HOME (ICDH), 2014, : 305 - 313
  • [6] A Global Feature for Non-Rigid 3D Shape Retrieval with Shape Similarity
    Kazuma, Takenobu
    Katoka, Masayoshi
    He, Aiguo
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2014, : 732 - 736
  • [7] An evaluation of canonical forms for non-rigid 3D shape retrieval
    Pickup, David
    Liu, Juncheng
    Sun, Xianfang
    Rosin, Paul L.
    Martin, Ralph R.
    Cheng, Zhiquan
    Lian, Zhouhui
    Nie, Sipin
    Jin, Longcun
    Shamai, Gil
    Sahillioglu, Yusuf
    Kavan, Ladislav
    GRAPHICAL MODELS, 2018, 97 : 17 - 29
  • [8] Non-rigid 3D Object Retrieval with a Learned Shape Descriptor
    Shi, Xiangfu
    Zhao, Jieyu
    Zhang, Long
    Ye, Xulun
    IMAGE AND GRAPHICS (ICIG 2017), PT II, 2017, 10667 : 24 - 37
  • [9] Skeleton Tree based Non-rigid 3D Shape Retrieval
    Zhu, Yiran
    Kang, Jiaqi
    Lv, Chenlei
    Xu, Shu
    Xue, Yanping
    Wang, Xingce
    Wu, Zhongke
    PROCEEDINGS OF THE 12TH INTERNATIONAL SYMPOSIUM ON VISUAL INFORMATION COMMUNICATION AND INTERACTION, VINCI 2019, 2019,
  • [10] Multi-feature distance metric learning for non-rigid 3D shape retrieval
    Wang, Huibing
    Li, Haohao
    Peng, Jinjia
    Fu, Xianping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (21) : 30943 - 30958