Orbital Torus Imaging: Acceleration, Density, and Dark Matter in the Galactic Disk Measured with Element Abundance Gradients

被引:6
|
作者
Horta, Danny [1 ]
Price-Whelan, Adrian M. [1 ]
Hogg, David W. [1 ,2 ,3 ]
Johnston, Kathryn V. [4 ]
Widrow, Lawrence [5 ]
Dalcanton, Julianne J. [1 ,6 ]
Ness, Melissa K. [1 ,4 ]
Hunt, Jason A. S. [1 ,7 ]
机构
[1] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
[2] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany
[3] NYU, Ctr Cosmol & Particle Phys, Dept Phys, 726 Broadway, New York, NY 10003 USA
[4] Columbia Univ, Dept Astron, 550 West 120th St, New York, NY 10027 USA
[5] Queen's Univ, Dept Phys Engn Phys & Astron, Kingston, ON, Canada
[6] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA
[7] Univ Surrey, Sch Math & Phys, Guildford GU2 7XH, England
来源
ASTROPHYSICAL JOURNAL | 2024年 / 962卷 / 02期
关键词
FINAL TARGETING STRATEGY; PHASE-SPACE SPIRALS; MILKY-WAY; DATA RELEASE; VERTICAL WAVES; APOGEE DATA; GALAXY; MASS; EVOLUTION; TELESCOPE;
D O I
10.3847/1538-4357/ad16e8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Under the assumption of a simple and time-invariant gravitational potential, many Galactic dynamics techniques infer the milky Way's mass and dark matter distributions from stellar kinematic observations. These methods typically rely on parameterized potential models of the Galaxy and must take into account nontrivial survey selection effects, because they make use of the density of stars in phase space. Large-scale spectroscopic surveys now supply information beyond kinematics in the form of precise stellar label measurements (especially element abundances). These element abundances are known to correlate with orbital actions or other dynamical invariants. Here, we use the Orbital Torus Imaging framework that uses abundance gradients in phase space to map orbits. In many cases these gradients can be measured without detailed knowledge of the selection function. We use stellar surface abundances from the Apache Point Observatory Galactic Evolution Experiment survey combined with kinematic data from the Gaia mission. Our method reveals the vertical (z-direction) orbital structure in the Galaxy and enables empirical measurements of the vertical acceleration field and orbital frequencies in the disk. From these measurements, we infer the total surface mass density, sigma, and midplane volume density, rho 0, as a function of Galactocentric radius and height. Around the Sun, we find sigma circle dot(z=1.1kpc)=72-9+6M circle dot pc-2 and rho circle dot(z=0)=0.081-0.009+0.015M circle dot pc-3 using the most constraining abundance ratio, [Mg/Fe]. This corresponds to a dark matter contribution in surface density of sigma circle dot,DM(z = 1.1 kpc) = 24 +/- 4 M circle dot pc-2, and in total volume mass density of rho circle dot,DM(z = 0) = 0.011 +/- 0.002 M circle dot pc-3. Moreover, using these mass density values we estimate the scale length of the low-alpha disk to be h R = 2.24 +/- 0.06 kpc.
引用
收藏
页数:17
相关论文
共 1 条
  • [1] JEANS ANALYSIS OF THE GALACTIC THICK DISK AND THE LOCAL DARK MATTER DENSITY
    Sanchez-Salcedo, F. J.
    Flynn, Chris
    de Diego, J. A.
    ASTROPHYSICAL JOURNAL, 2016, 817 (01):