On sampling Kaczmarz-Motzkin methods for solving large-scale nonlinear systems

被引:4
|
作者
Zhang, Feiyu [1 ]
Bao, Wendi [1 ]
Li, Weiguo [1 ]
Wang, Qin [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2023年 / 42卷 / 03期
基金
中国国家自然科学基金;
关键词
Large-scale nonlinear equations; Finite convex constraints; Sampling Kaczmarz-Motzkin method; Projection method; Randomized accelerated projection method; CONVERGENCE;
D O I
10.1007/s40314-023-02265-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, for solving large-scale nonlinear equations, we propose a nonlinear sampling Kaczmarz-Motzkin (NSKM) method. Based on the local tangential cone condition and the Jensen's inequality, we prove convergence of our method with two different assumptions. Then, for solving nonlinear equations with the convex constraints, we present two variants of the NSKM method: the projected sampling Kaczmarz-Motzkin (PSKM) method and the accelerated projected sampling Kaczmarz-Motzkin (APSKM) method. With the use of the nonexpansive property of the projection and the convergence of the NSKM method, the convergence analysis is obtained. Numerical results show that the NSKM method with the sample of the suitable size outperforms the nonlinear randomized Kaczmarz method in terms of calculation times. The APSKM and PSKM methods are practical and promising for the constrained nonlinear problem.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] On sampling Kaczmarz–Motzkin methods for solving large-scale nonlinear systems
    Feiyu Zhang
    Wendi Bao
    Weiguo Li
    Qin Wang
    Computational and Applied Mathematics, 2023, 42
  • [2] Block sampling Kaczmarz-Motzkin methods for consistent linear systems
    Zhang, Yanjun
    Li, Hanyu
    CALCOLO, 2021, 58 (03)
  • [3] A SAMPLING KACZMARZ-MOTZKIN ALGORITHM FOR LINEAR FEASIBILITY
    De Loera, Jesus A.
    Haddock, Jamie
    Needell, Deanna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S66 - S87
  • [4] Sparse sampling Kaczmarz-Motzkin method with linear convergence
    Yuan, Ziyang
    Zhang, Hui
    Wang, Hongxia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3463 - 3478
  • [5] Greed Works: An Improved Analysis of Sampling Kaczmarz-Motzkin\ast
    Haddock, Jamie
    Ma, Anna
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (01): : 342 - 368
  • [6] Sampling Kaczmarz-Motzkin method for linear feasibility problems: generalization and acceleration
    Morshed, Md Sarowar
    Islam, Md Saiful
    Noor-E-Alam, Md.
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 719 - 779
  • [7] Sampling Kaczmarz-Motzkin method for linear feasibility problems: generalization and acceleration
    Md Sarowar Morshed
    Md Saiful Islam
    Md. Noor-E-Alam
    Mathematical Programming, 2022, 194 : 719 - 779
  • [8] Greedy Motzkin-Kaczmarz methods for solving linear systems
    Zhang, Yanjun
    Li, Hanyu
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (04)
  • [9] Block sampling Kaczmarz–Motzkin methods for consistent linear systems
    Yanjun Zhang
    Hanyu Li
    Calcolo, 2021, 58
  • [10] A greedy block Kaczmarz algorithm for solving large-scale linear systems
    Niu, Yu-Qi
    Zheng, Bing
    APPLIED MATHEMATICS LETTERS, 2020, 104