Biharmonic Nonlinear Scalar Field Equations

被引:2
|
作者
Mederski, JarosLaw [1 ]
Siemianowski, Jakub [1 ,2 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Nicolaus Copernicus Univ Torun, Fac Math & Comp Sci, Ul Gagarina 11, PL-87100 Torun, Poland
关键词
CONCENTRATION-COMPACTNESS PRINCIPLE; GAGLIARDO-NIRENBERG INEQUALITIES; SOBOLEV INEQUALITIES; EXISTENCE; CALCULUS;
D O I
10.1093/imrn/rnac303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Brezis-Kato-type regularity result for weak solutions to the biharmonic nonlinear equation Delta(2)u = g(x, u) in R-N with a Caratheodory function g : R-N x R -> R, N >= 5. The regularity results give rise to the existence of ground state solutions provided that g has a general subcritical growth at infinity. We also conceive a new biharmonic logarithmic Sobolev inequality integral(RN) vertical bar u vertical bar(2) log vertical bar u vertical bar dx <= N/8 log (C integral(RN)vertical bar Delta u vertical bar(2) dx), for u is an element of H-2(R-N), integral(RN) u(2) dx = 1, for a constant 0 < C < (2/pi eN)(2) and we characterize its minimizers.
引用
收藏
页码:19963 / 19995
页数:33
相关论文
共 50 条