Lipid extraction and CO2 capture with switchable polarity solvent

被引:0
|
作者
Wu, Kejing [1 ]
Tao, Chuandong [2 ]
Zeng, Shanjin [2 ]
Liu, Yingying [1 ]
Liang, Bin [2 ]
Lu, Houfang [2 ]
机构
[1] Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610207, Peoples R China
[2] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
关键词
Switchable polarity solvent; N-dimethylcyclohexylamine; Lipid extraction; CO; 2; capture; Kinetic models; HYDROPHILICITY SOLVENTS; AQUEOUS-SOLUTIONS; MASS-TRANSFER; ABSORPTION; OIL; PERFORMANCE;
D O I
10.1016/j.crcon.2023.05.005
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, lipid extraction and CO2 capture are combined using N, N-dimethylcyclohexylamine (DMCHA) as switchable polarity solvent. The effects of operation parameters are discussed according to the CO2 absorption/ desorption and lipid/DMCHA recovery results. A triphasic models considering lipid, water, and gas phases are established to analyze the kinetic behaviors. The results show that DMCHA is reversible through CO2 absorption/ desorption, and the enhanced dispersion of droplets and bubbles in water phase improves the lipid/DMCHA recovery and CO2 absorption/desorption. The triphasic kinetic models fit well with experimental data, and gas-liquid mass transfer is regarded as the rate-determining step. The lower interfacial areas result in the poorer gas-liquid mass transfer for the DMCHA recovery than lipid recovery process.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Development of biphasic solvent for CO2 capture by tailoring the polarity of amine solution
    Wang, Rujie
    Zhao, Huajun
    Wang, Yancheng
    Qi, Cairao
    Zhang, Shihan
    Wang, Lidong
    Li, Ming
    FUEL, 2022, 325
  • [2] CO2-triggered switchable solvent for lipid extraction from microalgal biomass
    Choi, Oh Kyung
    Lee, Jae Woo
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 819
  • [3] Tuning CO2 Capture at the Gas/Amine Solution Interface by Changing the Solvent Polarity
    Gladich, Ivan
    Abotaleb, Ahmed
    Sinopoli, Alessandro
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (45): : 10245 - 10256
  • [4] Novel Solvent for CO2 Capture
    Chen, Yifeng
    Ji, Xiaoyan
    Yang, Zhuhong
    Lu, Xiaohua
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5124 - 5129
  • [5] Controlled polarity of CO2 switchable solution with DBU and alcohols
    Hao Yingquan
    Shimoyama, Yusuke
    FLUID PHASE EQUILIBRIA, 2019, 494 : 115 - 124
  • [6] Phase Separation Solvent for CO2 Capture
    Machida, Hiroshi
    Esaki, Takehiro
    Oba, Kazuki
    Tomikawa, Takashi
    Yamaguchi, Tsuyoshi
    Horizoe, Hirotoshi
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 823 - 826
  • [7] MDEA/Piperazine as a solvent for CO2 capture
    Closmann, Fred
    Nguyen, Thu
    Rochelle, Gary T.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1351 - 1357
  • [8] Regeneration of solvent for CO2 capture: A review
    Ebewele, Eboseremen Osemenkhian
    Al-Marzouqi, Mohamed Hassan
    2021 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY: GENERATION AND APPLICATIONS (ICREGA), 2021, : 163 - 167
  • [9] CO2 speciation and solvent structure of CO2 anhydrous capture fluids
    Heldebrant, David
    Malhotra, Deepika
    Jones, Martin
    Headen, Thomas
    Cantu, David
    Glezakou, Vanda
    Rousseau, Roger
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [10] Modeling of CO2 solubility of an aqueous polyamine solvent for CO2 capture
    Na, Sujin
    Hwang, Sung June
    Kim, Hoonsik
    Baek, Il-Hyun
    Lee, Kwang Soon
    CHEMICAL ENGINEERING SCIENCE, 2019, 204 : 140 - 150