Time-frequency Hypergraph Neural Network for Rotating Machinery Fault Diagnosis with Limited Data

被引:1
|
作者
Ke, Haobin [1 ]
Chen, Zhiwen [1 ]
Xu, Jiamin [1 ]
Fan, Xinyu [1 ]
Yang, Chao [1 ]
Peng, Tao [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; limited data; the time and frequency domain; hypergraph neural network; the higher-order interaction information;
D O I
10.1109/DDCLS58216.2023.10167156
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the scarcity of fault samples and the weakness of processing higher-order interactive information, the most existing intelligence methods fail to achieve the optimal effect in fault diagnosis. To address these problems, a time-frequency hypergraph neural network-based fault diagnosis method is proposed. In the proposed network, the limited data is initially segmented using the sliding window mechanism to obtain a set of time-domain signal instances. Additionally, the Fast Fourier Transform (FFT) is applied to each signal instance to extract corresponding frequency-domain signals, so as to capture more fault-sensitive features. Subsequently, a two-layer convolutional neural network is used to extract fault-attention features from both the time and frequency domain signals. Also, in order to reduce computational complexity, the time-frequency domain features are adaptively stacked based on a self-attention mechanism. Furthermore, a feature similarity graph is constructed for the time-frequency domain features using a k-nearest neighbor algorithm. This graph is then input into the hypergraph neural network (HGNN) to obtain the final diagnosis results. One comparative experiment shows that the proposed method not only mitigates the performance degradation caused by limited samples and noisy environments, but also effectively leverages the higher-order interaction information among nodes in the hypergraph.
引用
收藏
页码:1786 / 1792
页数:7
相关论文
共 50 条
  • [1] Rotating Machinery Fault Diagnosis Based on EEMD Time-Frequency Energy and SOM Neural Network
    Wang, Hao
    Gao, Jinji
    Jiang, Zhinong
    Zhang, Junjie
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (06) : 5207 - 5217
  • [2] Rotating Machinery Fault Diagnosis Based on EEMD Time-Frequency Energy and SOM Neural Network
    Hao Wang
    Jinji Gao
    Zhinong Jiang
    Junjie Zhang
    [J]. Arabian Journal for Science and Engineering, 2014, 39 : 5207 - 5217
  • [3] Application of Time-Frequency Analysis in Rotating Machinery Fault Diagnosis
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    [J]. SHOCK AND VIBRATION, 2023, 2023
  • [4] Rotating machinery fault diagnosis using time-frequency methods
    Lakis, A. A.
    [J]. CHALLENGES IN POWER, HIGH VOLTAGES AND MACHINES: PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON ELECTRIC POWER SYSTEMS, HIGH VOLTAGES, ELECTRIC MACHINES (POWER '07), 2007, : 139 - +
  • [5] An intelligent fault diagnosis method of rotating machinery based on deep neural networks and time-frequency analysis
    Xin, Yu
    Li, Shunming
    Cheng, Chun
    Wang, Jinrui
    [J]. JOURNAL OF VIBROENGINEERING, 2018, 20 (06) : 2321 - 2335
  • [6] Fault diagnosis of rotating machinery based on time-frequency image feature extraction
    Zhang, Shiyi
    Zhang, Laigang
    Zhao, Teng
    Mahmoud Mohamed Selim
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (04) : 5193 - 5200
  • [7] Cascading Time-Frequency Transformer and Spatio-Temporal Graph Attention Network for Rotating Machinery Fault Diagnosis
    Liu, Yiqi
    Yu, Zhewen
    Xie, Min
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [8] A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
    Attaran, B.
    Ghanbarzadeh, A.
    Moradi, S.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (04): : 668 - 675
  • [9] Fault diagnosis of rotating machinery based on time-frequency decomposition and envelope spectrum analysis
    Chang, Yonggen
    Jiang, Fan
    Zhu, Zhencai
    Li, Wei
    [J]. JOURNAL OF VIBROENGINEERING, 2017, 19 (02) : 943 - 954
  • [10] ART Kohonen neural network for fault diagnosis of rotating machinery
    Yang, BS
    Han, T
    An, JL
    Kim, DJ
    [J]. ELEVENTH WORLD CONGRESS IN MECHANISM AND MACHINE SCIENCE, VOLS 1-5, PROCEEDINGS, 2004, : 2085 - 2090