A joint multiobjective optimization of feature selection and classifier design for high-dimensional data classification

被引:12
|
作者
Bai, Lixia [1 ]
Li, Hong [1 ]
Gao, Weifeng [1 ]
Xie, Jin [1 ]
Wang, Houqiang [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Classifier design; Ensemble learning; Multiobjective optimization; High-dimensional data; BINARY DIFFERENTIAL EVOLUTION; GENETIC ALGORITHM; NEURAL-NETWORKS;
D O I
10.1016/j.ins.2023.01.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection (FS) in data mining and machine learning has attracted extensive attention. The purpose of FS in a classification task is to find the optimal subset of features from given candidate features. Recently, more and more meta-heuristic algorithms have been used to deal with the FS problems. However, meta-heuristic algorithms suffer from certain issues, such as large search space for solutions and huge time consumption. Moreover, most of existing meta-heuristic al-gorithms focus only on the selection of an optimal feature subset, and pay little attention to the optimal design of the classifier. In this article, we propose a joint multiobjective optimization method for both feature selection and classifier design, called JMO-FSCD. The proposed approach uses neural network as a classifier and introduces a non-iterative algorithm for training the classifier so as to ensure good performance and fast learning. A new coding scheme is also designed for optimizing FS and classifier simultaneously. For demonstrating the superiority of the proposed approach, its performance is compared with those of six state-of-the-art FS algorithms. Experimental results on thirty-five benchmark data sets reflect the superior performance of the proposed JMO-FSCD.
引用
收藏
页码:457 / 473
页数:17
相关论文
共 50 条
  • [1] Multiobjective optimization algorithm with dynamic operator selection for feature selection in high-dimensional classification
    Wei, Wenhong
    Xuan, Manlin
    Li, Lingjie
    Lin, Qiuzhen
    Ming, Zhong
    Coello, Carlos A. Coello
    [J]. APPLIED SOFT COMPUTING, 2023, 143
  • [2] Simultaneous Feature Selection and Classification for High-Dimensional Data
    Pai, Vriddhi
    Gupta, Subhash Chand
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 153 - 158
  • [3] A Variable Granularity Search-Based Multiobjective Feature Selection Algorithm for High-Dimensional Data Classification
    Cheng, Fan
    Cui, Junjie
    Wang, Qijun
    Zhang, Lei
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (02) : 266 - 280
  • [4] Feature Selection and Classification for High-Dimensional Incomplete Multimodal Data
    Deng, Wan-Yu
    Liu, Dan
    Dong, Ying-Ying
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [5] Feature selection for high-dimensional data
    Destrero A.
    Mosci S.
    De Mol C.
    Verri A.
    Odone F.
    [J]. Computational Management Science, 2009, 6 (1) : 25 - 40
  • [6] Feature selection for high-dimensional data
    Bolón-Canedo V.
    Sánchez-Maroño N.
    Alonso-Betanzos A.
    [J]. Progress in Artificial Intelligence, 2016, 5 (2) : 65 - 75
  • [7] A particle swarm optimization based multiobjective memetic algorithm for high-dimensional feature selection
    Juanjuan Luo
    Dongqing Zhou
    Lingling Jiang
    Huadong Ma
    [J]. Memetic Computing, 2022, 14 : 77 - 93
  • [8] A particle swarm optimization based multiobjective memetic algorithm for high-dimensional feature selection
    Luo, Juanjuan
    Zhou, Dongqing
    Jiang, Lingling
    Ma, Huadong
    [J]. MEMETIC COMPUTING, 2022, 14 (01) : 77 - 93
  • [9] Genetic programming for feature construction and selection in classification on high-dimensional data
    Binh Tran
    Bing Xue
    Mengjie Zhang
    [J]. Memetic Computing, 2016, 8 : 3 - 15
  • [10] Benchmark for filter methods for feature selection in high-dimensional classification data
    Bommert, Andrea
    Sun, Xudong
    Bischl, Bernd
    Rahnenfuehrer, Joerg
    Lang, Michel
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 143