Single-term and multi-term nonuniform time-stepping approximation methods for two-dimensional time-fractional diffusion-wave equation

被引:2
|
作者
Kumari, Sarita [1 ]
Pandey, Rajesh K. [1 ]
机构
[1] Indian Inst Technol BHU Varanasi, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
关键词
Fractional diffusion-wave equation; Nonuniform Crank-Nicolson method; Stability; Numerical examples; PARTIAL-DIFFERENTIAL-EQUATIONS; SCHEME;
D O I
10.1016/j.camwa.2023.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to propose two efficient schemes to handle the accuracy near the singularity a t = 0 in solving two-dimensional time-fractional diffusion-wave equation (TFDWE). The considered time fractional derivative is in the Caputo sense of order alpha (1 < alpha < 2). For the approximation of the time-fractional Caputo derivative (TFCD), we use Nonuniform L-1 method (single-step) and Nonuniform Crank-Nicolson L1 - 2 method (multi-step). The L-1 method has order of convergence (OC) min(3 - alpha, gamma alpha) where gamma is the mesh grading parameter used in construction of the nonuniform mesh, and L1-2 method has second OC. We consider nonuniform time mesh to compensate the lack of smoothness caused by the presence of singularity in TFCD a t = 0. After that, we adopt these two methods to approximate TFCD and apply the central difference operator for the space direction derivative approximations to get the system of equations for considered model. Then, we use the Alternating Direction Implicit (ADI) approach to develop two kinds of fully discrete schemes under the regularity conditions to solve the TFDWE. Further, we prove the stability analysis of these two schemes. Two numerical examples are given for one-dimensional (1D) and two-dimensional (2D) TFDWE with smooth and non-smooth exact solutions to indicate the accuracy of ADI schemes. The illustrated examples show that both schemes have second-order accuracy in space direction, and in temporal direction the schemes achieve min(3 - alpha, gamma alpha) and second order convergence, respectively for all 1 < alpha < 2. The corresponding absolute error is plotted to see the advantage of nonuniform time meshes at the initial singularity t = 0.
引用
收藏
页码:359 / 383
页数:25
相关论文
共 50 条
  • [1] A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation
    Ezz-Eldien, S. S.
    Doha, E. H.
    Wang, Y.
    Cai, W.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91
  • [2] A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations
    Yin, Baoli
    Liu, Yang
    Li, Hong
    Zeng, Fanhai
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 56 - 82
  • [3] Numerical methods for the two-dimensional multi-term time-fractional diffusion equations
    Zhao, Linlin
    Liu, Fawang
    Anh, Vo V.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2253 - 2268
  • [4] The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation
    Shen, Shujun
    Liu, Fawang
    Anh, Vo V.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 515 - 534
  • [5] Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
    Ya-bing WEI
    Yan-min ZHAO
    Zheng-guang SHI
    Fen-ling WANG
    Yi-fa TANG
    [J]. Acta Mathematicae Applicatae Sinica, 2018, 34 (04) : 828 - 841
  • [6] Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
    Ya-bing Wei
    Yan-min Zhao
    Zheng-guang Shi
    Fen-ling Wang
    Yi-fa Tang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 828 - 841
  • [7] Subordination approach to multi-term time-fractional diffusion-wave equations
    Bazhlekova, Emilia
    Bazhlekov, Ivan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 179 - 192
  • [8] Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
    Wei, Ya-bing
    Zhao, Yan-min
    Shi, Zheng-guang
    Wang, Fen-ling
    Tang, Yi-fa
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 828 - 841
  • [9] A wavelet approach for the multi-term time fractional diffusion-wave equation
    Sarvestani, F. Soltani
    Heydari, M. H.
    Niknam, A.
    Avazzadeh, Z.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 640 - 661
  • [10] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Liu, Fawang
    Meerschaert, Mark M.
    McGough, Robert J.
    Zhuang, Pinghui
    Liu, Qingxia
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 9 - 25