RANDOM NEURAL NETWORKS IN THE INFINITE WIDTH LIMIT AS GAUSSIAN PROCESSES

被引:7
|
作者
Hanin, Boris [1 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 6A期
关键词
Neural networks; Gaussian processes; limit theorems; PRODUCTS;
D O I
10.1214/23-AAP1933
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article gives a new proof that fully connected neural networks with random weights and biases converge to Gaussian processes in the regime where the input dimension, output dimension, and depth are kept fixed, while the hidden layer widths tend to infinity. Unlike prior work, convergence is shown assuming only moment conditions for the distribution of weights and for quite general nonlinearities.
引用
收藏
页码:4798 / 4819
页数:22
相关论文
共 50 条
  • [1] Infinite-width limit of deep linear neural networks
    Chizat, Lenaic
    Colombo, Maria
    Fernandez-Real, Xavier
    Figalli, Alessio
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (10) : 3958 - 4007
  • [2] Training Integrable Parameterizations of Deep Neural Networks in the Infinite-Width Limit
    Hajjar, Karl
    Chizat, Lenaic
    Giraud, Christophe
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [3] Random ReLU Neural Networks as Non-Gaussian Processes
    Parhi, Rahul
    Bohra, Pakshal
    El Biari, Ayoub
    Pourya, Mehrsa
    Unser, Michael
    Journal of Machine Learning Research, 2025, 26
  • [4] Random ReLU Neural Networks as Non-Gaussian Processes
    Parhi, Rahul
    Bohra, Pakshal
    El Biari, Ayoub
    Pourya, Mehrsa
    Unser, Michael
    JOURNAL OF MACHINE LEARNING RESEARCH, 2025, 26 : 1 - 31
  • [5] Phase Diagram for Two-layer ReLU Neural Networks at Infinite-width Limit
    Luo, Tao
    Xu, Zhi-Qin John
    Ma, Zheng
    Zhang, Yaoyu
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22 : 1 - 47
  • [6] Phase diagram for two-layer ReLU neural networks at infinite-width limit
    Luo, Tao
    Xu, Zhi-Qin John
    Ma, Zheng
    Zhang, Yaoyu
    Journal of Machine Learning Research, 2021, 22
  • [7] A statistical mechanics framework for Bayesian deep neural networks beyond the infinite-width limit
    Pacelli, R.
    Ariosto, S.
    Pastore, M.
    Ginelli, F.
    Gherardi, M.
    Rotondo, P.
    NATURE MACHINE INTELLIGENCE, 2023, 5 (12) : 1497 - 1507
  • [8] A statistical mechanics framework for Bayesian deep neural networks beyond the infinite-width limit
    R. Pacelli
    S. Ariosto
    M. Pastore
    F. Ginelli
    M. Gherardi
    P. Rotondo
    Nature Machine Intelligence, 2023, 5 : 1497 - 1507
  • [9] Neural networks: A replacement for Gaussian processes?
    Lilley, M
    Frean, M
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2005, PROCEEDINGS, 2005, 3578 : 195 - 202
  • [10] Limit theorems for supremum of Gaussian processes over a random interval
    Lin Fu-ming
    Peng Zuo-xiang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2018, 33 (03) : 335 - 343