Islands of Shape Coexistence: Theoretical Predictions and Experimental Evidence

被引:6
|
作者
Martinou, Andriana [1 ]
Bonatsos, Dennis [1 ]
Peroulis, Spyridon Kosmas [1 ]
Karakatsanis, Konstantinos Eleftherios [2 ,3 ]
Mertzimekis, Theodoros John [4 ]
Minkov, Nikolay [5 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Nucl & Particle Phys, GR-15310 Attiki, Greece
[2] Univ Zagreb, Fac Sci, Dept Phys, HR-10000 Zagreb, Croatia
[3] Aristotle Univ Thessaloniki, Phys Dept, GR-54124 Thessaloniki, Greece
[4] Natl & Kapodistrian Univ Athens, Dept Phys, Zografou Campus, GR-15784 Athens, Greece
[5] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Tzarigrad Rd, Sofia 1784, Bulgaria
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
shape coexistence; proxy-SU(3) symmetry; covariant density functional theory; NUCLEAR SHELL-MODEL; HARTREE-BOGOLIUBOV THEORY; COLLECTIVE MOTION; STATES;
D O I
10.3390/sym15010029
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parameter-free theoretical predictions based on a dual shell mechanism within the proxy-SU(3) symmetry of atomic nuclei, as well as covariant density functional theory calculations using the DDME2 functional indicate that shape coexistence (SC) based on the particle-hole excitation mechanism cannot occur everywhere on the nuclear chart but is restricted on islands lying within regions of 7-8, 17-20, 34-40, 59-70, 96-112, 146-168 protons or neutrons. Systematics of data for even-even nuclei possessing K=0 (beta) and K=2 (gamma) bands support the existence of these islands, on which shape coexistence appears whenever the K=0 bandhead 0(2)(+) and the first excited state of the ground state band 2(1)(+) lie close in energy, with nuclei characterized by 0(2)(+) lying below the 2(1)(+ )found in the center of these islands. In addition, a simple theoretical mechanism leading to multiple-shape coexistence is briefly discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] COEXISTENCE OF SUPERCONDUCTIVITY AND MAGNETISM - THEORETICAL PREDICTIONS AND EXPERIMENTAL RESULTS
    BULAEVSKII, LN
    BUZDIN, AI
    KULIC, ML
    PANJUKOV, SV
    ADVANCES IN PHYSICS, 1985, 34 (02) : 175 - 261
  • [2] Adjunct islands in English: Theoretical perspectives and experimental evidence
    Meng, Fanjun
    JOURNAL OF LINGUISTICS, 2024, 60 (03) : 708 - 712
  • [3] Promoting cooperation in resource dilemmas: Theoretical predictions and experimental evidence
    Botelho, Anabela
    Dinar, Ariel
    Pinto, Ligia M. Costa
    Rapoport, Amnon
    JOURNAL OF BEHAVIORAL AND EXPERIMENTAL ECONOMICS, 2015, 54 : 40 - 49
  • [4] Switching behavior, coexistence and diversification: comparing empirical community-wide evidence with theoretical predictions
    Carnicer, Jofre
    Abrams, Peter A.
    Jordano, Pedro
    ECOLOGY LETTERS, 2008, 11 (08) : 802 - 808
  • [5] An experimental view on shape coexistence in nuclei
    Garrett, Paul E.
    Zielinska, Magda
    Clement, Emmanuel
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2022, 124
  • [6] ARENE OXIDE-OXEPIN ISOMERIZATION - THEORETICAL PREDICTIONS AND EXPERIMENTAL-EVIDENCE
    BOYD, DR
    STUBBS, ME
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1983, 105 (09) : 2554 - 2559
  • [7] EVIDENCE FOR SHAPE COEXISTENCE IN PT-186
    HEBBINGHAUS, G
    GAST, W
    KRAMERFLECKEN, A
    LIEDER, RM
    SKALSKI, J
    URBAN, W
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1987, 328 (04): : 387 - 392
  • [8] Evidence for shape coexistence in 98Mo
    Thomas, T.
    Nomura, K.
    Werner, V.
    Ahn, T.
    Cooper, N.
    Duckwitz, H.
    Hinton, M.
    Ilie, G.
    Jolie, J.
    Petkov, P.
    Radeck, D.
    PHYSICAL REVIEW C, 2013, 88 (04):
  • [9] Evidence for shape coexistence in 77Br
    Ray, I
    Banerjee, P
    Bhattacharya, S
    Goswami, A
    Muralithar, S
    Singh, RP
    Bhowmik, RK
    NUCLEAR PHYSICS A, 2001, 694 (3-4) : 411 - 423
  • [10] EVIDENCE FOR SHAPE COEXISTENCE IN EU-151
    BURKE, DG
    LOVHOIDEN, G
    WADDINGTON, JC
    PHYSICS LETTERS B, 1973, B 43 (06) : 470 - 472