Efficiency estimates for electromicrobial production of branched-chain hydrocarbons

被引:0
|
作者
Sheppard, Timothy J. [1 ]
Specht, David A. [1 ]
Barstow, Buz [1 ]
机构
[1] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA
关键词
FATTY-ACIDS; PHOTOSYNTHESIS; CHALLENGES; ENERGY; SYSTEM;
D O I
10.1016/j.isci.2023.108773
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In electromicrobial production (EMP), electricity is used as microbial energy to produce complex molecules starting from simple compounds like CO2. The aviation industry requires sustainable fuel alternatives that can meet demands for high-altitude performance and modern emissions standards. EMP of jet fuel components provides a unique opportunity to generate fuel blends compatible with modern engines producing net-neutral emissions. Branched-chain hydrocarbons modulate the boiling and freezing points of liquid fuels at high altitudes. In this study, we analyze the pathways necessary to generate branched-chain hydrocarbons in vivo utilizing extracellular electron uptake (EEU) and H-2-oxidation for electron delivery, the Calvin cycle for CO2-fixation and the aldehyde deformolating oxygenase decarboxylation pathway. We find the maximum electrical-to-fuel energy conversion efficiencies to be 40:0(+0:6) (- 4:4) % and 39:8(+0:7) (- 4:5)%. For a model blend containing straight-chain, branched-chain, and terpenoid components, increasing the fraction of branched-chain alkanes from zero to 47% only lowers the electrical energy conversion efficiency from 40:1(+0:7) (- 4:5) % to 39:5(+0:7) - (4:6)%.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] PRODUCTION OF BRANCHED-CHAIN HYDROCARBONS VIA ISOSYNTHESIS
    SOFIANOS, A
    [J]. CATALYSIS TODAY, 1992, 15 (01) : 149 - 175
  • [2] UPTAKE OF AROMATIC AND BRANCHED-CHAIN HYDROCARBONS BY YEASTS
    CROW, SA
    BELL, SL
    AHEARN, DG
    [J]. BOTANICA MARINA, 1979, 22 (06) : 406 - 406
  • [3] UPTAKE OF AROMATIC AND BRANCHED-CHAIN HYDROCARBONS BY YEAST
    CROW, SA
    BELL, SL
    AHEARN, DG
    [J]. BOTANICA MARINA, 1980, 23 (02) : 117 - 120
  • [4] THE SYNTHESIS AND REACTIONS OF BRANCHED-CHAIN HYDROCARBONS .9. THE PREPARATION OF SOME BRANCHED-CHAIN ALCOHOLS AND KETONES
    ANSELL, MF
    DAVIS, MA
    HANCOCK, JW
    HICKINBOTTOM, WJ
    HOLTON, PG
    HYATT, AA
    [J]. JOURNAL OF THE CHEMICAL SOCIETY, 1955, : 2705 - 2707
  • [5] Effects of branched-chain VFA and branched-chain AA supplementation on NDF degradation and VFA production in vitro
    Roman-Garcia, Y.
    Denton, B. L.
    Lee, C.
    Socha, M.
    Firkins, J. L.
    [J]. JOURNAL OF DAIRY SCIENCE, 2019, 102 : 409 - 410
  • [6] Upper limit efficiency estimates for electromicrobial production of drop-in jet fuels
    Sheppard, Timothy J.
    Specht, David A.
    Barstow, Buz
    [J]. BIOELECTROCHEMISTRY, 2023, 154
  • [7] BRANCHED-CHAIN ACID PRODUCTION BY RUMEN BACTERIA
    ALLISON, MJ
    BUCKLIN, JA
    [J]. JOURNAL OF ANIMAL SCIENCE, 1971, 33 (01) : 274 - &
  • [8] SUBMILLIMETER AND FAR IR STUDIES OF NORMAL AND BRANCHED-CHAIN HYDROCARBONS
    GILBERT, AS
    NORTH, AM
    PARKER, TG
    PETHRICK, RA
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1976, 32 (05) : 931 - 936
  • [9] A BRANCHED-CHAIN ON A BRANCHED-CHAIN APPROACH TO FRACTAL RANDOM FLIGHTS
    VLAD, MO
    [J]. CHAOS SOLITONS & FRACTALS, 1993, 3 (02) : 171 - 176
  • [10] In-vivo production of branched-chain amino acids, branched-chain keto acids, and β-hydroxy β-methylbutyric acid
    Ten Have, Gabriella A. M.
    Engelen, MarieIle P. K. J.
    Deutz, Nicolaas E. P.
    [J]. CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2022, 25 (01): : 43 - 49