Drug-target affinity prediction with extended graph learning-convolutional networks

被引:3
|
作者
Qi, Haiou [1 ]
Yu, Ting [2 ]
Yu, Wenwen [3 ]
Liu, Chenxi [4 ]
机构
[1] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Nursing Dept, Hangzhou 310016, Peoples R China
[2] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Operating Room Dept, Hangzhou 310016, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Med & Hlth Management, Tongji Med Sch, Wuhan 430030, Peoples R China
关键词
Drug-target affinity prediction; Deep learning; Drug discovery; Graph learning-convolutional networks; DISCOVERY; DATABASES; DOCKING;
D O I
10.1186/s12859-024-05698-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundHigh-performance computing plays a pivotal role in computer-aided drug design, a field that holds significant promise in pharmaceutical research. The prediction of drug-target affinity (DTA) is a crucial stage in this process, potentially accelerating drug development through rapid and extensive preliminary compound screening, while also minimizing resource utilization and costs. Recently, the incorporation of deep learning into DTA prediction and the enhancement of its accuracy have emerged as key areas of interest in the research community. Drugs and targets can be characterized through various methods, including structure-based, sequence-based, and graph-based representations. Despite the progress in structure and sequence-based techniques, they tend to provide limited feature information. Conversely, graph-based approaches have risen to prominence, attracting considerable attention for their comprehensive data representation capabilities. Recent studies have focused on constructing protein and drug molecular graphs using sequences and SMILES, subsequently deriving representations through graph neural networks. However, these graph-based approaches are limited by the use of a fixed adjacent matrix of protein and drug molecular graphs for graph convolution. This limitation restricts the learning of comprehensive feature representations from intricate compound and protein structures, consequently impeding the full potential of graph-based feature representation in DTA prediction. This, in turn, significantly impacts the models' generalization capabilities in the complex realm of drug discovery.ResultsTo tackle these challenges, we introduce GLCN-DTA, a model specifically designed for proficiency in DTA tasks. GLCN-DTA innovatively integrates a graph learning module into the existing graph architecture. This module is designed to learn a soft adjacent matrix, which effectively and efficiently refines the contextual structure of protein and drug molecular graphs. This advancement allows for learning richer structural information from protein and drug molecular graphs via graph convolution, specifically tailored for DTA tasks, compared to the conventional fixed adjacent matrix approach. A series of experiments have been conducted to validate the efficacy of the proposed GLCN-DTA method across diverse scenarios. The results demonstrate that GLCN-DTA possesses advantages in terms of robustness and high accuracy.ConclusionsThe proposed GLCN-DTA model enhances DTA prediction performance by introducing a novel framework that synergizes graph learning operations with graph convolution operations, thereby achieving richer representations. GLCN-DTA does not distinguish between different protein classifications, including structurally ordered and intrinsically disordered proteins, focusing instead on improving feature representation. Therefore, its applicability scope may be more effective in scenarios involving structurally ordered proteins, while potentially being limited in contexts with intrinsically disordered proteins.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Drug–target affinity prediction with extended graph learning-convolutional networks
    Haiou Qi
    Ting Yu
    Wenwen Yu
    Chenxi Liu
    [J]. BMC Bioinformatics, 25
  • [2] Multidta: drug-target binding affinity prediction via representation learning and graph convolutional neural networks
    Deng, Jiejin
    Zhang, Yijia
    Pan, Yaohua
    Li, Xiaobo
    Lu, Mingyu
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2709 - 2718
  • [3] Hierarchical graph representation learning for the prediction of drug-target binding affinity
    Chu, Zhaoyang
    Huang, Feng
    Fu, Haitao
    Quan, Yuan
    Zhou, Xionghui
    Liu, Shichao
    Zhang, Wen
    [J]. INFORMATION SCIENCES, 2022, 613 : 507 - 523
  • [4] Predicting Drug-Target Affinity Based on Recurrent Neural Networks and Graph Convolutional Neural Networks
    Tian, Qingyu
    Ding, Mao
    Yang, Hui
    Yue, Caibin
    Zhong, Yue
    Du, Zhenzhen
    Liu, Dayan
    Liu, Jiali
    Deng, Yufeng
    [J]. COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2022, 25 (04) : 634 - 641
  • [5] A survey of drug-target interaction and affinity prediction methods via graph neural networks
    Zhang, Yue
    Hu, Yuqing
    Han, Na
    Yang, Aqing
    Liu, Xiaoyong
    Cai, Hongmin
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [6] Graph Convolutional Neural Networks for Predicting Drug-Target Interactions
    Torng, Wen
    Altman, Russ B.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (10) : 4131 - 4149
  • [7] Nonlinear Graph Learning-Convolutional Networks for Node Classification
    Chen, Linjun
    Liu, Xingyi
    Li, Zexin
    [J]. NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2727 - 2736
  • [8] Nonlinear Graph Learning-Convolutional Networks for Node Classification
    Linjun Chen
    Xingyi Liu
    Zexin Li
    [J]. Neural Processing Letters, 2022, 54 : 2727 - 2736
  • [9] Sequence-based drug-target affinity prediction using weighted graph neural networks
    Mingjian Jiang
    Shuang Wang
    Shugang Zhang
    Wei Zhou
    Yuanyuan Zhang
    Zhen Li
    [J]. BMC Genomics, 23
  • [10] Sequence-based drug-target affinity prediction using weighted graph neural networks
    Jiang, Mingjian
    Wang, Shuang
    Zhang, Shugang
    Zhou, Wei
    Zhang, Yuanyuan
    Li, Zhen
    [J]. BMC GENOMICS, 2022, 23 (01)