Enhancing Heat Transfer and Energy Storage Performance of Shell-and-Tube Latent Heat Thermal Energy Storage Unit with Unequal-Length Fins

被引:6
|
作者
Wu Yangyang [1 ]
Li Dong [1 ]
Yang Ruitong [1 ]
Muslum, Arici [2 ]
Liu Changyu [1 ]
机构
[1] Northeast Petr Univ, Sch Architecture & Civil Engn, Daqing 163318, Peoples R China
[2] Kocaeli Univ, Engn Fac, Mech Engn Dept, Umuttepe Campus, TR-41001 Kocaeli, Turkey
基金
美国国家科学基金会;
关键词
unequal-length fin; enhanced heat transfer; energy storage; shell and tube heat exchanger; PCM; PHASE-CHANGE MATERIAL; HORIZONTAL SHELL; PCM; ENHANCEMENT; EXCHANGER; SOLIDIFICATION; PARAFFIN; METHANE; ACID;
D O I
10.1007/s11630-022-1655-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
Previous studies in literatures adequately emphasized that inserting fins into phase change material is among the most promising techniques to augment thermal performance of shell-and-tube latent heat thermal energy storage unit. In this study, the novel unequal-length fins are designed from the perspective of synergistic benefits of heat transfer and energy storage performance, and the effects of arrangement, number and total length of unequal-length fins are numerically investigated. Results show that utilization of fins with ascending length, when short and long fins are located in the inlet and outlet of heat transfer fluid respectively, can further promote the heat transfer and energy storage performance compared with equal length fins, and a maximum 6.17% and 0.43% increment of heat transfer performance and stored energy is achieved in full melting time, respectively. The number of unequal-length fins plays a major role in the energy storage, and 18.95% and 0.91% improvement of heat transfer performance and stored energy is realized when equipped with 2 unequal-length fins. A 21.17% improvement of the heat transfer performance is obtained when the total length of unequal-length fins is 18 mm. The present study is helpful to make further efforts to enhance heat transfer and energy storage of shell-and-tube latent heat thermal energy storage unit with unequal-length fins.
引用
收藏
页码:2018 / 2031
页数:14
相关论文
共 50 条
  • [1] Enhancing Heat Transfer and Energy Storage Performance of Shell-and-Tube Latent Heat Thermal Energy Storage Unit with Unequal-Length Fins
    Yangyang Wu
    Dong Li
    Ruitong Yang
    Arıcı Müslüm
    Changyu Liu
    [J]. Journal of Thermal Science, 2023, 32 : 2018 - 2031
  • [2] Enhancing Heat Transfer and Energy Storage Performance of Shell-and-Tube Latent Heat Thermal Energy Storage Unit with Unequal-Length Fins
    WU Yangyang
    LI Dong
    YANG Ruitong
    MüSLüM Arιcι
    LIU Changyu
    [J]. Journal of Thermal Science, 2023, 32 (06) : 2018 - 2031
  • [3] Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins
    Yang, Xiaohu
    Lu, Zhao
    Bai, Qingsong
    Zhang, Qunli
    Jin, Liwen
    Yan, Jinyue
    [J]. APPLIED ENERGY, 2017, 202 : 558 - 570
  • [4] Effect of perforated fins on the heat-transfer performance of vertical shell-and-tube latent heat energy storage unit
    Li, Hongyang
    Hu, Chengzhi
    He, Yichuan
    Tang, Dawei
    Wang, Kuiming
    Huang, Wenguo
    [J]. JOURNAL OF ENERGY STORAGE, 2021, 39
  • [5] Heat transfer performance of a finned shell-and-tube latent heat thermal energy storage unit in the presence of thermal radiation
    Shen, Zu-Guo
    Chen, Shuai
    Chen, Ben
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 45
  • [6] Study on heat transfer enhancement of horizontal shell-and-tube latent heat thermal energy storage unit
    Hu, Zhipei
    Sun, Zhigao
    Meng, Erlin
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (03): : 450 - 455
  • [7] A combined heat transfer enhancement technique for shell-and-tube latent heat thermal energy storage
    Woloszyn, Jerzy
    Szopa, Krystian
    [J]. RENEWABLE ENERGY, 2023, 202 : 1342 - 1356
  • [8] Effects of arrow-shape fins on the melting performance of a horizontal shell-and-tube latent heat thermal energy storage unit
    Ye, Wenwen
    Khodadadi, J. M.
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 54
  • [9] Simplified model for estimating performance of latent heat thermal energy storage of a shell-and-tube type unit
    Nakaso, K
    Nogami, S
    Takahashi, N
    Hamada, Y
    Fukai, J
    [J]. KAGAKU KOGAKU RONBUNSHU, 2004, 30 (04) : 474 - 479
  • [10] Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system
    Bechiri, Mohammed
    Mansouri, Kacem
    [J]. RENEWABLE ENERGY, 2015, 74 : 825 - 838