ImplantFormer: vision transformer-based implant position regression using dental CBCT data

被引:0
|
作者
Yang, Xinquan [1 ,2 ,3 ]
Li, Xuguang [4 ]
Li, Xuechen [1 ,2 ,3 ]
Wu, Peixi [5 ]
Shen, Linlin [1 ,2 ,3 ]
Deng, Yongqiang [4 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[2] Shenzhen Univ, AI Res Ctr Med Image Anal & Diag, Shenzhen, Peoples R China
[3] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen, Peoples R China
[4] Shenzhen Univ, Dept Stomatol, Gen Hosp, Shenzhen, Peoples R China
[5] Shenzhen Univ, Sch Dent, Shenzhen, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2024年 / 36卷 / 12期
基金
中国国家自然科学基金;
关键词
Implant prosthesis; Dental implant; Vision transformer; Deep learning;
D O I
10.1007/s00521-023-09411-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Implant prosthesis is the most appropriate treatment for dentition defect or dentition loss, which usually involves a surgical guide design process to decide the implant position. However, such design heavily relies on the subjective experiences of dentists. In this paper, a transformer-based Implant Position Regression Network, ImplantFormer, is proposed to automatically predict the implant position based on the oral CBCT data. We creatively propose to predict the implant position using the 2D axial view of the tooth crown area and fit a centerline of the implant to obtain the actual implant position at the tooth root. Convolutional stem and decoder are designed to coarsely extract image features before the operation of patch embedding and integrate multi-level feature maps for robust prediction, respectively. As both long-range relationship and local features are involved, our approach can better represent global information and achieves better location performance. Extensive experiments on a dental implant dataset through fivefold cross-validation demonstrated that the proposed ImplantFormer achieves superior performance than existing methods.
引用
收藏
页码:6643 / 6658
页数:16
相关论文
共 50 条
  • [1] ImplantFormer: vision transformer-based implant position regression using dental CBCT data
    Xinquan Yang
    Xuguang Li
    Xuechen Li
    Peixi Wu
    Linlin Shen
    Yongqiang Deng
    Neural Computing and Applications, 2024, 36 : 6643 - 6658
  • [2] Transformer-based Planning for Symbolic Regression
    Shojaee, Parshin
    Meidani, Kazem
    Farimani, Amir Barati
    Reddy, Chandan K.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] Improving the quality of dental crown using a Transformer-based method
    Hosseinimanesh, Golriz
    Ghadiri, Farnoosh
    Alsheghri, Ammar
    Zhang, Ying
    Keren, Julia
    Cheriet, Farida
    Guibault, Francois
    arXiv, 2023,
  • [4] Vision Transformer-Based Tailing Detection in Videos
    Lee, Jaewoo
    Lee, Sungjun
    Cho, Wonki
    Siddiqui, Zahid Ali
    Park, Unsang
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [5] Vision Transformer-Based Photovoltaic Prediction Model
    Kang, Zaohui
    Xue, Jizhong
    Lai, Chun Sing
    Wang, Yu
    Yuan, Haoliang
    Xu, Fangyuan
    ENERGIES, 2023, 16 (12)
  • [6] A vision transformer-based automated human identification using ear biometrics
    Mehta, Ravishankar
    Shukla, Sindhuja
    Pradhan, Jitesh
    Singh, Koushlendra Kumar
    Kumar, Abhinav
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 78
  • [7] Vision Transformer-based pilot pose estimation
    Wu, Honglan
    Liu, Hao
    Sun, Youchao
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (10): : 3100 - 3110
  • [8] Vision transformer-based generalized zero-shot learning with data criticizing
    Zhou, Quan
    Liang, Yucuan
    Zhang, Zhenqi
    Cao, Wenming
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [9] Vision Transformer-Based Anomaly Detection Method for Offshore Platform Monitoring Data
    Zhu, Quanhua
    Wu, Qingpeng
    Yue, Yalin
    Bao, Yuequan
    Zhang, Tao
    Wang, Xueliang
    Jiang, Zhentao
    Chen, Haozheng
    STRUCTURAL CONTROL & HEALTH MONITORING, 2024, 2024
  • [10] Estimating Sampling Rate of Human Activity Data from Accelerometer using Transformer-based Regression Model
    Kawano, Hinase
    Okamoto, Marina
    Murao, Kazuya
    ADJUNCT PROCEEDINGS OF THE 2023 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING & THE 2023 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTING, UBICOMP/ISWC 2023 ADJUNCT, 2023, : 200 - 201