Adaptive Neural Network-Based Prescribed-Time Observer for Battery State-of-Charge Estimation

被引:26
|
作者
Pan, Chenyang [1 ]
Peng, Zhaoxia [1 ]
Yang, Shichun [1 ]
Wen, Guoguang [2 ]
Huang, Tingwen [3 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[3] Texas A&M Univ Qatar, Sci Program, Doha, Qatar
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Neural network (NN); prescribed time stability; state of charge; LITHIUM-ION BATTERY; SOC ESTIMATION; MEASUREMENT NOISE; DESIGN;
D O I
10.1109/TPEL.2022.3205437
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convergence speed is an important indicator to evaluate the performance of state-of-charge (SOC) estimators. To improve the convergence speed, this article proposes an adaptive radial basis function neural network-based prescribed-time observer to estimate the battery SOC. First, an adaptive RBF NN is employed to approximate the nonlinear part of the battery equivalent circuit model, and the online learning process of network weight can adapt the variations in battery parameters. Then, a prescribed-time SOC observer is developed to ensure the state and weight estimation errors converge within the convergence time T, which can be prescribed by users and is irrelevant on initial values. Thus, the network weight no longer needs to update when time exceeds T, and the computational burden can be effectively saved. Furthermore, a switched-gain scheme with a naturally switched time T is employed to simultaneously guarantee the convergence speed and estimation accuracy. An adaptive robust term is designed to compensate the approximation error and possible variations of the network weight in the steady state. Finally, the theoretical stability is proved by the Lyapunov theory, and the practical effectiveness is evaluated by experiments and simulations.
引用
收藏
页码:165 / 176
页数:12
相关论文
empty
未找到相关数据