Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning

被引:8
|
作者
Markovic, Gordana [1 ]
Manojlovic, Vaso [2 ]
Ruzic, Jovana [3 ]
Sokic, Miroslav [1 ]
机构
[1] Inst Technol Nucl & Other Mineral Raw Mat, Belgrade 11000, Serbia
[2] Univ Belgrade, Fac Technol & Met, Belgrade 11000, Serbia
[3] Univ Belgrade, Natl Inst Republ Serbia, Vinca Inst Nucl Sci, Dept Mat, Belgrade 11000, Serbia
关键词
titanium alloys; machine learning; Extra Tree Regression; Monte Carlo method; Young's modulus; IMPLANT MATERIALS; YOUNGS MODULUS; STABILITY; MO;
D O I
10.3390/ma16196355
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanium alloys have been present for decades as the main components for the production of various orthopedic and dental elements. However, modern times require titanium alloys with a low Young's modulus, and without the presence of cytotoxic alloying elements. Machine learning was used with aim to analyze biocompatible titanium alloys and predict the composition of Ti alloys with a low Young's modulus. A database was created using experimental data for alloy composition, Young's modulus, and mechanical and thermal properties of biocompatible titanium alloys. The Extra Tree Regression model was built to predict the Young's modulus of titanium alloys. By processing data of 246 alloys, the specific heat was discovered to be the most influential parameter that contributes to the lowering of the Young's modulus of titanium alloys. Further, the Monte Carlo method was used to predict the composition of future alloys with the desired properties. Simulation results of ten million samples, with predefined conditions for obtaining titanium alloys with a Young's modulus lower than 70 GPa, show that it is possible to obtain several multicomponent alloys, consisting of five main elements: titanium, zirconium, tin, manganese and niobium.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] ENDURANCE OF LOW-MODULUS β-TYPE TITANIUM ALLOYS FOR SPINAL FIXATION
    Niinomi, Mitsuo
    Nakai, Masaaki
    Hieda, Junko
    Cho, Ken
    Narita, Kengo
    TMS 2014 SUPPLEMENTAL PROCEEDINGS, 2014, : 205 - 212
  • [2] Integrating machine learning and CALPHAD method for exploring low-modulus near-β-Ti alloys
    Hao Zou
    Yue-Yan Tian
    Li-Gang Zhang
    Ren-Hao Xue
    Zi-Xuan Deng
    Ming-Ming Lu
    Jian-Xin Wang
    Li-Bin Liu
    RareMetals, 2024, 43 (01) : 309 - 323
  • [3] Integrating machine learning and CALPHAD method for exploring low-modulus near-β-Ti alloys
    Zou, Hao
    Tian, Yue-Yan
    Zhang, Li-Gang
    Xue, Ren-Hao
    Deng, Zi-Xuan
    Lu, Ming-Ming
    Wang, Jian-Xin
    Liu, Li-Bin
    RARE METALS, 2024, 43 (01) : 309 - 323
  • [4] Integrating machine learning and CALPHAD method for exploring low-modulus near-β-Ti alloys
    Hao Zou
    Yue-Yan Tian
    Li-Gang Zhang
    Ren-Hao Xue
    Zi-Xuan Deng
    Ming-Ming Lu
    Jian-Xin Wang
    Li-Bin Liu
    Rare Metals, 2024, 43 : 309 - 323
  • [5] Machine learning interatomic potential for the low-modulus Ti-Nb-Zr alloys in the vicinity of dynamical instability
    Mukhamedov, Boburjon
    Tasnadi, Ferenc
    Abrikosov, Igor A.
    MATERIALS & DESIGN, 2025, 253
  • [6] Discovery of Low-Modulus Ti-Nb-Zr Alloys Based on Machine Learning and First-Principles Calculations
    Salvador, Camilo A. F.
    Zornio, Bruno F.
    Miranda, Caetano R.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (51) : 56850 - 56861
  • [7] Alloys-by-design: A low-modulus titanium alloy for additively manufacture d biome dical implants
    Alabort, E.
    Tang, Y. T.
    Barba, D.
    Reed, R. C.
    ACTA MATERIALIA, 2022, 229
  • [8] Elastoplastic properties of a low-modulus titanium-based β alloy
    Betekhtin, V. I.
    Kolobov, Yu R.
    Golosova, O. A.
    Kardashev, B. K.
    Kadomtsev, A. G.
    Narykova, M. V.
    Ivanov, M. B.
    Vershinina, T. N.
    TECHNICAL PHYSICS, 2013, 58 (10) : 1432 - 1436
  • [9] Elastoplastic properties of a low-modulus titanium-based β alloy
    V. I. Betekhtin
    Yu. R. Kolobov
    O. A. Golosova
    B. K. Kardashev
    A. G. Kadomtsev
    M. V. Narykova
    M. B. Ivanov
    T. N. Vershinina
    Technical Physics, 2013, 58 : 1432 - 1436
  • [10] Cell response to plasma electrolytic oxidation surface-modified low-modulus β-type titanium alloys
    Tanase, C. E.
    Golozar, M.
    Best, S. M.
    Brooks, R. A.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 176 : 176 - 184