Objective Bayesian inference for the reliability in a bivariate Lomax distribution

被引:0
|
作者
Kang, Sang Gil [1 ]
Lee, Woo Dong [2 ]
Kim, Yongku [3 ]
机构
[1] Sangji Univ, Dept Comp & Data Informat, Wonju 26339, South Korea
[2] Daegu Haany Univ, Div Self Design Convergence, Gyongsan 38610, South Korea
[3] Kyungpook Natl Univ, Dept Stat, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Bivariate Lomax distribution; Matching prior; Reference prior; Propriety; Reliability; FREQUENTIST; PARAMETER; PRIORS; MODEL;
D O I
10.1007/s42952-023-00223-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the objective Bayesian analysis for the reliability in the bivariate Lomax distribution. In this paper, we derive the first- and second-order matching priors and the reference priors for the reliability in the bivariate Lomax population. However, it turns out that the reference priors do not satisfy the first-order matching criterion and also, the matching priors and the reference priors have different distributions. We provide conditions for the general prior, including the matching and reference priors, to generate proper posterior distributions. Our simulation shows that the matching prior matches the target coverage probabilities well in a frequentist sense. Furthermore, even when the reference priors do not satisfy the first-order matching criterion, they still perform as well as the second-order matching prior. Finally, we demonstrate our results using two real examples.
引用
收藏
页码:816 / 837
页数:22
相关论文
共 50 条
  • [1] Objective Bayesian inference for the reliability in a bivariate Lomax distribution
    Sang Gil Kang
    Woo Dong Lee
    Yongku Kim
    Journal of the Korean Statistical Society, 2023, 52 : 816 - 837
  • [2] Objective Bayesian analysis for the Lomax distribution
    Ferreira, Paulo H.
    Ramos, Eduardo
    Ramos, Pedro L.
    Gonzales, Jhon F. B.
    Tomazella, Vera L. D.
    Ehlers, Ricardo S.
    Silva, Eveliny B.
    Louzada, Francisco
    STATISTICS & PROBABILITY LETTERS, 2020, 159
  • [3] Posterior propriety of bivariate lomax distribution under objective priors
    Kang, Sang Gil
    Lee, Woo Dong
    Kim, Yongku
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (09) : 2201 - 2209
  • [4] Bayesian inference in measurement error models from objective priors for the bivariate normal distribution
    Mário de Castro
    Ignacio Vidal
    Statistical Papers, 2019, 60 : 1059 - 1078
  • [5] Bayesian inference in measurement error models from objective priors for the bivariate normal distribution
    de Castro, Mario
    Vidal, Ignacio
    STATISTICAL PAPERS, 2019, 60 (04) : 1059 - 1078
  • [6] Inference on Stress-Strength Reliability for Lomax Exponential Distribution
    Pandit, Parameshwar, V
    Kavitha, N.
    STATISTICS AND APPLICATIONS, 2024, 22 (01): : 231 - 242
  • [7] BAYESIAN-INFERENCE FOR A BIVARIATE BINOMIAL-DISTRIBUTION
    CROWDER, M
    SWEETING, T
    BIOMETRIKA, 1989, 76 (03) : 599 - 603
  • [8] A bivariate distribution with Lomax and geometric margins
    Marek Arendarczyk
    Tomasz J. Kozubowski
    Anna K. Panorska
    Journal of the Korean Statistical Society, 2018, 47 : 405 - 422
  • [9] A bivariate distribution with Lomax and geometric margins
    Arendarczyk, Marek
    Kozubowski, Tomasz J.
    Panorska, Anna K.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (04) : 405 - 422
  • [10] Bayesian Inference for a Hidden Truncated Bivariate Exponential Distribution with Applications
    Ghosh, Indranil
    Ng, Hon Keung Tony
    Kim, Kipum
    Kim, Seong W.
    AXIOMS, 2024, 13 (03)