The genesis and control of microcracks in nickel-rich cathode materials for lithium-ion batteries

被引:6
|
作者
Liao, Qin-Tao [1 ,2 ]
Guo, Si-Jie [1 ]
Qi, Mu-Yao [1 ,2 ]
Zhang, Si-Dong [1 ,2 ]
Ma, Pei-Zhong [1 ,2 ]
Li, Jin-Yang [1 ]
Cao, An-Min [1 ,2 ]
Wan, Li-Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-ENERGY-DENSITY; TRANSITION-METAL OXIDE; NI-RICH; LAYERED CATHODE; LINI0.8CO0.15AL0.05O2; CATHODE; CHEMOMECHANICAL INTERPLAY; CHARGE HETEROGENEITY; SURFACE DEGRADATION; RECENT PROGRESS; NCA CATHODE;
D O I
10.1039/d3se00844d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the advantages of high reversible capacity and low cost, Ni-rich layered metal oxides (NROs) are considered among the most competitive cathode materials for the next generation of lithium-ion batteries (LIBs). Despite the obvious contribution to energy density from increasing Ni content, the development of NROs is inevitably challenged by the severe chemical and structural instability, especially for Ni contents higher than 80%, which were manifested by notorious chemo-mechanical problems including parasitic reactions with organic electrolytes and continuous structural failure during extended cycles, thereby leading to serious problems related to the reliability and safety of LIBs. Particularly, the formation of microcracks inside the NRO particles attributed to the uneven stress field is considered a characteristic feature, whose evolution inside the particles continues to expose new electrode-electrolyte interface, accordingly aggravating the cycle stability and jeopardizing their practical application. Herein, we update the knowledge on NRO microcracks starting with a detailed discussion on those essential factors trigging their formation, and then the crack-related failure mechanism of NRO particles was introduced to elucidate the structure-performance relationship of NRO microcracks. Different control strategies focusing on modulating the physicochemical properties both on the surface and in the bulk of NRO particles are analyzed to clarify their contribution to alleviating the adverse impact of the microcracks. We also envision future research directions toward crack-free NRO materials so that robust cathode materials with high energy density and high cycling stability could be simultaneously ensured for next-generation LIBs. A schematic diagram of the formation, detrimental impacts of microcracks, and the corresponding modification strategies.
引用
收藏
页码:4805 / 4824
页数:20
相关论文
共 50 条
  • [1] Nickel-Rich Layered Cathode Materials for Lithium-Ion Batteries
    Ye, Zhengcheng
    Qiu, Lang
    Yang, Wen
    Wu, Zhenguo
    Liu, Yuxia
    Wang, Gongke
    Song, Yang
    Zhong, Benhe
    Guo, Xiaodong
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (13) : 4249 - 4269
  • [2] A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries
    Yan, Wuwei
    Yang, Shunyi
    Huang, Youyuan
    Yang, Yong
    Guohui Yuan
    Journal of Alloys and Compounds, 2020, 819
  • [3] A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries
    Yan, Wuwei
    Yang, Shunyi
    Huang, Youyuan
    Yang, Yong
    Yuan, Guohui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 819
  • [4] Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries
    Wang, Rui
    Wang, Lifan
    Fan, Yujie
    Yang, Woochul
    Zhan, Chun
    Liu, Guicheng
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 110 : 120 - 130
  • [5] Lithium-ion batteries with nickel-rich oxide concentration gradient cathode materials
    Zhang S.
    Wang S.
    Chen W.
    Gao P.
    Zhu Y.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (03): : 1506 - 1516
  • [6] Nickel-Rich Cathode Yarn for Wearable Lithium-Ion Batteries
    Ifra Marriam
    Mike Tebyetekerwa
    Hiran Chathuranga
    Kaige Sun
    Aijun Du
    Cheng Yan
    Advanced Fiber Materials, 2024, 6 : 341 - 353
  • [7] Nickel-Rich Cathode Yarn for Wearable Lithium-Ion Batteries
    Marriam, Ifra
    Tebyetekerwa, Mike
    Chathuranga, Hiran
    Sun, Kaige
    Du, Aijun
    Yan, Cheng
    ADVANCED FIBER MATERIALS, 2024, 6 (02) : 341 - 353
  • [8] Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives
    Myung, Seung-Taek
    Maglia, Filippo
    Park, Kang-Joon
    Yoon, Chong Seung
    Lamp, Peter
    Kim, Sung-Jin
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2017, 2 (01): : 196 - 223
  • [9] Washing of Nickel-Rich Cathode Materials for Lithium-Ion Batteries: Towards a Mechanistic Understanding
    Pritzl, Daniel
    Teufl, Tobias
    Freiberg, Anna T. S.
    Strehle, Benjamin
    Sicklinger, Johannes
    Sommer, Heino
    Hartmann, Pascal
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (16) : A4056 - A4066
  • [10] Research progress in nickel-rich layered cathode materials cycling stability for lithium-ion batteries
    Liu, Na
    Zhang, Kun
    Tian, Jun
    Liang, Xiaoqiang
    Hu, Daozhong
    Wang, Yituo
    Tong, Lei
    Xu, Chunchang
    Tian, Cuijun
    Gao, Hongbo
    Zhang, Yueqiang
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (11): : 62 - 73