Functional brain networks reflect spatial and temporal autocorrelation

被引:15
|
作者
Shinn, Maxwell [1 ,2 ]
Hu, Amber [3 ]
Turner, Laurel [3 ]
Noble, Stephanie [4 ]
Preller, Katrin H. [2 ,5 ]
Ji, Jie Lisa [2 ]
Moujaes, Flora [5 ]
Achard, Sophie [6 ]
Scheinost, Dustin [1 ,4 ]
Constable, R. Todd [1 ,4 ]
Krystal, John H. [2 ]
Vollenweider, Franz X. [5 ]
Lee, Daeyeol [7 ,8 ,9 ,10 ]
Anticevic, Alan [1 ,2 ]
Bullmore, Edward T. [11 ]
Murray, John D. [1 ,2 ,12 ]
机构
[1] Yale Univ, Interdept Neurosci Program, New Haven, CT 06520 USA
[2] Yale Univ, Dept Psychiat, New Haven, CT 06511 USA
[3] Yale Univ, Yale Coll, New Haven, CT USA
[4] Yale Univ, Dept Radiol & Biomed Imaging, New Haven, CT USA
[5] Univ Hosp Psychiat, Dept Psychiat Psychotherapy & Psychosomat, Zurich, Switzerland
[6] Univ Grenoble Alpes, CNRS, Inria, Grenoble INP,LJK, Grenoble, France
[7] Johns Hopkins Univ, Zanvyl Krieger Mind Brain Inst, Baltimore, MD USA
[8] Johns Hopkins Univ, Kavli Discovery Neurosci Inst, Baltimore, MD USA
[9] Johns Hopkins Univ, Dept Psychol & Brain Sci, Baltimore, MD USA
[10] Johns Hopkins Univ, Dept Neurosci, Baltimore, MD USA
[11] Univ Cambridge, Dept Psychiat, Cambridge, England
[12] Yale Univ, Dept Phys, New Haven, CT 06511 USA
基金
英国医学研究理事会; 瑞士国家科学基金会; 英国生物技术与生命科学研究理事会;
关键词
TIME-SERIES; BOLD SIGNAL; FMRI DATA; CONNECTIVITY; PARCELLATION; RELIABILITY; DYNAMICS; NOISE; MRI; VARIABILITY;
D O I
10.1038/s41593-023-01299-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
High-throughput experimental methods in neuroscience have led to an explosion of techniques for measuring complex interactions and multi-dimensional patterns. However, whether sophisticated measures of emergent phenomena can be traced back to simpler, low-dimensional statistics is largely unknown. To explore this question, we examined resting-state functional magnetic resonance imaging (rs-fMRI) data using complex topology measures from network neuroscience. Here we show that spatial and temporal autocorrelation are reliable statistics that explain numerous measures of network topology. Surrogate time series with subject-matched spatial and temporal autocorrelation capture nearly all reliable individual and regional variation in these topology measures. Network topology changes during aging are driven by spatial autocorrelation, and multiple serotonergic drugs causally induce the same topographic change in temporal autocorrelation. This reductionistic interpretation of widely used complexity measures may help link them to neurobiology. Individual variation in fMRI-derived brain networks is reproduced in a model using only the smoothness (autocorrelation) of the fMRI time series. Smoothness has implication for aging and can be causally manipulated by psychedelic serotonergic drugs.
引用
收藏
页码:867 / 878
页数:36
相关论文
共 50 条
  • [1] Functional brain networks reflect spatial and temporal autocorrelation
    Maxwell Shinn
    Amber Hu
    Laurel Turner
    Stephanie Noble
    Katrin H. Preller
    Jie Lisa Ji
    Flora Moujaes
    Sophie Achard
    Dustin Scheinost
    R. Todd Constable
    John H. Krystal
    Franz X. Vollenweider
    Daeyeol Lee
    Alan Anticevic
    Edward T. Bullmore
    John D. Murray
    [J]. Nature Neuroscience, 2023, 26 : 867 - 878
  • [2] SPATIAL-TEMPORAL CONVOLUTIONAL ATTENTION FOR MAPPING FUNCTIONAL BRAIN NETWORKS
    Liu, Yiheng
    Ge, Enjie
    Qiang, Ning
    Liu, Tianming
    Ge, Bao
    [J]. 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [3] Evolution of spatial and temporal features of functional brain networks across the lifespan
    Vij, Shruti G.
    Nomi, Jason S.
    Dajani, Dina R.
    Uddin, Lucina Q.
    [J]. NEUROIMAGE, 2018, 173 : 498 - 508
  • [4] Predicting Brain Age Based on Spatial and Temporal Features of Human Brain Functional Networks
    Zhai, Jian
    Li, Ke
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2019, 13
  • [5] Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain
    Ekstrom, Arne D.
    Bookheimer, Susan Y.
    [J]. LEARNING & MEMORY, 2007, 14 (10) : 645 - 654
  • [6] Spatial-temporal convolutional attention for discovering and characterizing functional brain networks in task fMRI
    Liu, Yiheng
    Ge, Enjie
    Kang, Zili
    Qiang, Ning
    Liu, Tianming
    Ge, Bao
    [J]. NEUROIMAGE, 2024, 287
  • [7] Abnormal Spatial and Temporal Overlap of Time-Varying Brain Functional Networks in Patients with Schizophrenia
    Xiang, Jie
    Sun, Yumeng
    Wu, Xubin
    Guo, Yuxiang
    Xue, Jiayue
    Niu, Yan
    Cui, Xiaohong
    [J]. BRAIN SCIENCES, 2024, 14 (01)
  • [8] Effects of spatial smoothing on functional brain networks
    Alakorkko, Tuomas
    Saarimaki, Heini
    Glerean, Enrico
    Saramaki, Jari
    Korhonen, Onerva
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2017, 46 (09) : 2471 - 2480
  • [9] Spatial and temporal autocorrelation in innovation diffusion analysis
    Bertazzon, S
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 3, PROCEEDINGS, 2003, 2669 : 23 - 32
  • [10] Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex
    Jiang, Xi
    Li, Xiang
    Lv, Jinglei
    Zhao, Shijie
    Zhang, Shu
    Zhang, Wei
    Zhang, Tuo
    Han, Junwei
    Guo, Lei
    Liu, Tianming
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (06) : 1183 - 1192