Spatial deformable transformer for 3D point cloud registration

被引:0
|
作者
Xiong, Fengguang [1 ,2 ,3 ]
Kong, Yu [2 ]
Xie, Shuaikang [2 ]
Kuang, Liqun [1 ,2 ,3 ]
Han, Xie [1 ,2 ,3 ]
机构
[1] Shanxi Prov Key Lab Machine Vis & Virtual Real, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Comp Sci & Technol, Taiyuan 030051, Peoples R China
[3] Shanxi Prov Vis Informat Proc & Intelligent Robot, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
HISTOGRAMS;
D O I
10.1038/s41598-024-56217-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deformable attention only focuses on a small group of key sample-points around the reference point and make itself be able to capture dynamically the local features of input feature map without considering the size of the feature map. Its introduction into point cloud registration will be quicker and easier to extract local geometric features from point cloud than attention. Therefore, we propose a point cloud registration method based on Spatial Deformable Transformer (SDT). SDT consists of a deformable self-attention module and a cross-attention module where the deformable self-attention module is used to enhance local geometric feature representation and the cross-attention module is employed to enhance feature discriminative capability of spatial correspondences. The experimental results show that compared to state-of-the-art registration methods, SDT has a better matching recall, inlier ratio, and registration recall on 3DMatch and 3DLoMatch scene, and has a better generalization ability and time efficiency on ModelNet40 and ModelLoNet40 scene.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Spatial deformable transformer for 3D point cloud registration
    Fengguang Xiong
    Yu Kong
    Shuaikang Xie
    Liqun Kuang
    Xie Han
    [J]. Scientific Reports, 14
  • [2] Spatial-Temporal Transformer for 3D Point Cloud Sequences
    Wei, Yimin
    Liu, Hao
    Xie, Tingting
    Ke, Qiuhong
    Guo, Yulan
    [J]. 2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 657 - 666
  • [3] Learning multiview 3D point cloud registration
    Gojcic, Zan
    Zhou, Caifa
    Wegner, Jan D.
    Guibas, Leonidas J.
    Birdal, Tolga
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1756 - 1766
  • [4] 3D point cloud colorization by images registration
    Colorisation de nuages de points 3D par recalage dense d’images numériques
    [J]. 1600, Lavoisier (31): : 1 - 2
  • [5] 3D point cloud registration algorithm with IVCCS
    Wang C.
    Li G.
    Liu X.
    Shi C.
    Qiu W.
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (06):
  • [6] 3D POINT CLOUD REGISTRATION WITH SHAPE CONSTRAINT
    Agarwal, Swapna
    Bhowmick, Brojeshwar
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2199 - 2203
  • [7] Hierarchical Optimization of 3D Point Cloud Registration
    Liu, Huikai
    Zhang, Yue
    Lei, Linjian
    Xie, Hui
    Li, Yan
    Sun, Shengli
    [J]. SENSORS, 2020, 20 (23) : 1 - 20
  • [8] Stratified Transformer for 3D Point Cloud Segmentation
    Lai, Xin
    Liu, Jianhui
    Jiang, Li
    Wang, Liwei
    Zhao, Hengshuang
    Liu, Shu
    Qi, Xiaojuan
    Jia, Jiaya
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8490 - 8499
  • [9] A deformable patch-based transformer for 3D medical image registration
    Deng, Liwei
    Zhi, Qiang
    Huang, Sijuan
    Yang, Xin
    Wang, Jing
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (12) : 2295 - 2306
  • [10] Improved Feature Point Algorithm for 3D Point Cloud Registration
    Kamencay, Patrik
    Sinko, Martin
    Hudec, Robert
    Benco, Miroslav
    Radil, Roman
    [J]. 2019 42ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2019, : 517 - 520