Spatial-temporal features-based EEG emotion recognition using graph convolution network and long short-term memory

被引:5
|
作者
Zheng, Fa [1 ,2 ]
Hu, Bin [1 ,2 ]
Zheng, Xiangwei [1 ,2 ,3 ]
Zhang, Yuang [1 ,2 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China
[2] Shandong Prov Key Lab Distributed Comp Software No, Jinan, Peoples R China
[3] State Key Lab Highend Server & Storage Technol, Jinan, Peoples R China
关键词
Electroencephalography (EEG); emotion recognition; graph convolution network (GCN); long short-term memory (LSTM); DIFFERENTIAL ENTROPY FEATURE; NEURAL-NETWORK; ATTENTION; LSTM;
D O I
10.1088/1361-6579/acd675
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Objective. Emotion recognition on the basis of electroencephalography (EEG) signals has received a significant amount of attention in the areas of cognitive science and human-computer interaction (HCI). However, most existing studies either focus on one-dimensional EEG data, ignoring the relationship between channels, or only extract time-frequency features while not involving spatial features. Approach. We develop spatial-temporal features-based EEG emotion recognition using a graph convolution network (GCN) and long short-term memory (LSTM), named ERGL. First, the one-dimensional EEG vector is converted into a two-dimensional mesh matrix, so that the matrix configuration corresponds to the distribution of brain regions at EEG electrode locations, thus to represent the spatial correlation between multiple adjacent channels in a better way. Second, the GCN and LSTM are employed together to extract spatial-temporal features; the GCN is used to extract spatial features, while LSTM units are applied to extract temporal features. Finally, a softmax layer is applied to emotion classification. Main results. Extensive experiments are conducted on the A Dataset for Emotion Analysis using Physiological Signals (DEAP) and the SJTU Emotion EEG Dataset (SEED). The classification results of accuracy, precision, and F-score for valence and arousal dimensions on DEAP achieved 90.67% and 90.33%, 92.38% and 91.72%, and 91.34% and 90.86%, respectively. The accuracy, precision, and F-score of positive, neutral, and negative classifications reached 94.92%, 95.34%, and 94.17%, respectively, on the SEED dataset. Significance. The above results demonstrate that the proposed ERGL method is encouraging in comparison to state-of-the-art recognition research.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Convolution spatial-temporal attention network for EEG emotion recognition
    Cao, Lei
    Yu, Binlong
    Dong, Yilin
    Liu, Tianyu
    Li, Jie
    Physiological Measurement, 2024, 45 (12)
  • [2] Emotion recognition using spatial-temporal EEG features through convolutional graph attention network
    Li, Zhongjie
    Zhang, Gaoyan
    Wang, Longbiao
    Wei, Jianguo
    Dang, Jianwu
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [3] A Convolution Bidirectional Long Short-Term Memory Neural Network for Driver Emotion Recognition
    Du, Guanglong
    Wang, Zhiyao
    Gao, Boyu
    Mumtaz, Shahid
    Abualnaja, Khamael M.
    Du, Cuifeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4570 - 4578
  • [4] A Novel Cellular Network Traffic Prediction Algorithm Based on Graph Convolution Neural Networks and Long Short-Term Memory through Extraction of Spatial-Temporal Characteristics
    Chen, Geng
    Guo, Yishan
    Zeng, Qingtian
    Zhang, Yudong
    PROCESSES, 2023, 11 (08)
  • [5] Attention-Based Convolution Skip Bidirectional Long Short-Term Memory Network for Speech Emotion Recognition
    Zhang, Huiyun
    Huang, Heming
    Han, Henry
    IEEE ACCESS, 2021, 9 : 5332 - 5342
  • [6] STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
    Li, Jingcong
    Pan, Weijian
    Huang, Haiyun
    Pan, Jiahui
    Wang, Fei
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [7] Leveraging spatial-temporal convolutional features for EEG-based emotion recognition
    An, Yi
    Xu, Ning
    Qu, Zhen
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
  • [8] EEG-Based Emotion Recognition Using Spatial-Temporal Connectivity
    Chu, Wenhao
    Fu, Baole
    Xia, Yuxiao
    Liu, Yinhua
    IEEE ACCESS, 2023, 11 : 92496 - 92504
  • [9] Short-term load forecasting using spatial-temporal embedding graph neural network
    Wei, Chuyuan
    Pi, Dechang
    Ping, Mingtian
    Zhang, Haopeng
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 225
  • [10] Adaptive Spatial-Temporal Aware Graph Learning for EEG-Based Emotion Recognition
    Ye, Weishan
    Wang, Jiyuan
    Chen, Lin
    Dai, Lifei
    Sun, Zhe
    Liang, Zhen
    CYBORG AND BIONIC SYSTEMS, 2024, 5