Radiogenomic associations clear cell renal cell carcinoma: an exploratory study

被引:2
|
作者
Liu, Derek H. [1 ]
Dani, Komal A. [1 ]
Reddy, Sharath S. [1 ]
Lei, Xiaomeng [2 ]
Demirjian, Natalie L. [2 ]
Hwang, Darryl H. [2 ]
Varghese, Bino A. [2 ,11 ]
Rhie, Suhn K. [3 ]
Yap, Felix Y. [10 ]
Quinn, David I. [5 ]
Siddiqi, Imran [6 ]
Aron, Manju [6 ]
Vaishampayan, Ulka [7 ]
Zahoor, Haris
Cen, Steven Y. [2 ,8 ]
Gill, Inderbir S. [4 ]
Duddalwar, Vinay A. [2 ,4 ,9 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90033 USA
[2] Univ Southern Calif, Keck Sch Med, Dept Radiol, Los Angeles, CA 90033 USA
[3] Univ Southern Calif, Dept Biochem & Mol Med, Los Angeles, CA 90033 USA
[4] Univ Southern Calif, Inst Urol, Los Angeles, CA 90033 USA
[5] Univ Southern Calif, Dept Med, Los Angeles, CA 90033 USA
[6] Univ Southern Calif, Dept Pathol, Los Angeles, CA 90033 USA
[7] Univ Michigan, Dept Med, Ann Arbor, MI 48109 USA
[8] Univ Southern Calif, Dept Neurol, Los Angeles, CA 90033 USA
[9] Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA
[10] Radiol Associates San Luis Obispo, Atascadero, CA USA
[11] Univ Southern Calif, Dept Radiol, USC Norris Comprehens Canc & Hosp, Keck Sch Med, 1441 Eastlake Ave, Los Angeles, CA 90033 USA
关键词
CANCER; SETD2; PBRM1; EXPRESSION; REGRESSION; THERAPIES; BIOMARKER; JARID1C; BAP1;
D O I
10.1159/000530719
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
OBJECTIVES: This study investigates how quantitative texture analysis can be used to non-invasively identify novel radiogenomic correlations with Clear Cell Renal Cell Carcinoma (ccRCC) biomarkers. METHODS: The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) open-source database was used to identify 190 sets of patient genomic data that had corresponding multiphase contrast-enhanced CT images in The Cancer Imaging Archive (TCIA-KIRC). 2824 radiomic features spanning fifteen texture families were extracted from CT images using a custom-built MATLAB software package. Robust radiomic features with strong inter-scanner reproducibility were selected. Random Forest (RF), AdaBoost, and Elastic Net machine learning (ML) algorithms evaluated the ability of the selected radiomic features to predict the presence of 12 clinically relevant molecular biomarkers identified from literature. ML analysis was repeated with cases stratified by stage (I/II vs. III/IV) and grade (1/2 vs. 3/4). 10-fold cross validation was used to evaluate model performance. RESULTS: Before stratification by tumor grade and stage, radiomics predicted the presence of several biomarkers with weak discrimination (AUC 0.60-0.68). Once stratified, radiomics predicted KDM5C, SETD2, PBRM1, and mTOR mutation status with acceptable to excellent predictive discrimination (AUC ranges from 0.70 to 0.86). CONCLUSIONS: Radiomic texture analysis can potentially identify a variety of clinically relevant biomarkers in patients with ccRCC and may have a prognostic implication.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 50 条
  • [1] Radiogenomic Features of GIMAP Family Genes in Clear Cell Renal Cell Carcinoma: An Observational Study on CT Images
    Greco, Federico
    Panunzio, Andrea
    Tafuri, Alessandro
    Bernetti, Caterina
    Pagliarulo, Vincenzo
    Zobel, Bruno Beomonte
    Scardapane, Arnaldo
    Mallio, Carlo Augusto
    [J]. GENES, 2023, 14 (10)
  • [2] The Radiogenomic Landscape of Clear Cell Renal Cell Carcinoma: Insights into Lipid Metabolism through Evaluation of ADFP Expression
    Greco, Federico
    Panunzio, Andrea
    Bernetti, Caterina
    Tafuri, Alessandro
    Zobel, Bruno Beomonte
    Mallio, Carlo Augusto
    [J]. DIAGNOSTICS, 2024, 14 (15)
  • [3] Clear cell carcinoma of the liver: A comparative immunohistochemical study with renal clear cell carcinoma
    Murakata, LA
    Ishak, KG
    Nzeako, UC
    [J]. MODERN PATHOLOGY, 2000, 13 (08) : 874 - 881
  • [4] MUTATIONAL AND PROGNOSTIC ASSOCIATIONS OF IMMUNE CELL SIGNATURES IN CLEAR CELL RENAL CELL CARCINOMA
    Winer, Andrew
    Senbabaoglu, Yasin
    Kaffenberger, Samuel
    Coleman, Jonathan
    Russo, Paul
    Sander, Chris
    Hsieh, James
    Hakimi, Ari
    [J]. JOURNAL OF UROLOGY, 2015, 193 (04): : E556 - E557
  • [5] RADIOGENOMIC CORRELATES OF CLINICALLY RELEVANT CLEAR CELL RENAL CELL CANCER BIOMARKERS
    Liu, Derek
    Varghese, Bino
    Hwang, Darryl
    Lei, Xiaomeng
    Azadikhah, Afshin
    Dani, Komal
    Raman, Alex
    Cen, Steven
    Aron, Manju
    Zahoor, Harris
    Siddiqi, Imran
    Gill, Inderbir
    Duddalwar, Vinay
    [J]. JOURNAL OF UROLOGY, 2022, 207 (05): : E573 - E573
  • [6] Clear Cell Renal Cell Carcinoma
    Erickson, Lori A.
    [J]. MAYO CLINIC PROCEEDINGS, 2018, 93 (06) : 813 - 814
  • [7] Clear cell renal cell carcinoma
    Grignon, DJ
    Che, MX
    [J]. CLINICS IN LABORATORY MEDICINE, 2005, 25 (02) : 305 - +
  • [8] Clear cell thyroid carcinoma in a patient with clear cell renal cell carcinoma: Not as clear as it seems
    Rosell, Alejandra
    Munoz de Nova, Jose L.
    Lahera, Marcos
    Mingo, Alberto
    Jimenez-Heffernan, Jose A.
    [J]. CYTOPATHOLOGY, 2021, 32 (04) : 541 - 544
  • [9] Vascular architectural patterns in clear cell renal cell carcinoma and clear cell papillary renal cell carcinoma
    Canete-Portillo, Sofia
    Pena, Maria del Carmen Rodriguez
    Wang, Dezhi
    Sanchez, Diego F.
    Netto, George J.
    Magi-Galluzzi, Cristina
    [J]. VIRCHOWS ARCHIV, 2021, 479 (06) : 1187 - 1196
  • [10] Vascular architectural patterns in clear cell renal cell carcinoma and clear cell papillary renal cell carcinoma
    Sofia Canete-Portillo
    Maria del Carmen Rodriguez Pena
    Dezhi Wang
    Diego F. Sanchez
    George J. Netto
    Cristina Magi-Galluzzi
    [J]. Virchows Archiv, 2021, 479 : 1187 - 1196