Automated Segmentation of Blood Vessels Walls and Lumens on Digitized H&E Stained Brain Tissues Using Deep Learning

被引:0
|
作者
Lou, J. [1 ]
Chang, P. [2 ]
Nava, K. [3 ]
Chantaduly, C. [4 ]
Wang, H. [3 ]
Monuki, E. [5 ]
Vinters, H. [6 ]
Magaki, S. [6 ]
Patel, V. [7 ]
Christopher, W. [8 ]
Harvey, D. [7 ]
Keiser, M. [8 ]
Dugger, B. [7 ]
机构
[1] Univ Calif Irvine, Dept Pathol, Sch Med, Irvine, CA USA
[2] Univ Calif Irvine, Sch Med, Irvine, CA USA
[3] Univ Calif Davis, Davis, CA USA
[4] Univ Calif Irvine, Irvine, CA USA
[5] UCLA, Sch Med, Los Angeles, CA USA
[6] UCLA, David Geffen Sch Med, Los Angeles, CA USA
[7] Univ Calif Davis, Sch Med, Davis, CA USA
[8] Univ Calif San Francisco, San Francisco, CA USA
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
209
引用
收藏
页码:577 / 577
页数:1
相关论文
共 50 条
  • [1] Deep Learning for Automated Blood Vessel Detection on Digitized H&E Stained Formalin Fixed Paraffin Embedded Sections
    Nava, Kiana
    Chang, Peter
    Chantaduly, Chanon
    Lou, Jerry
    Monuki, Edwin
    Vinters, Harry
    Magaki, Shino
    Martini, Alessandra
    Williams, Christopher
    Nzenkue, Kevin
    Nguyen, My-Le
    Harvey, Danielle
    Keiser, Michael
    Dugger, Brittany
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2022, 81 (06): : 484 - 484
  • [2] Colorization of H&E stained tissue using Deep Learning
    Samsi, Siddharth
    Jones, Michael
    Kepner, Jeremy
    Reuther, Albert
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 640 - 643
  • [3] Deep learning-based transformation of H&E stained tissues into special stains
    de Haan, Kevin
    Zhang, Yijie
    Zuckerman, Jonathan E.
    Liu, Tairan
    Sisk, Anthony E.
    Diaz, Miguel F. P.
    Jen, Kuang-Yu
    Nobori, Alexander
    Liou, Sofia
    Zhang, Sarah
    Riahi, Rana
    Rivenson, Yair
    Wallace, W. Dean
    Ozcan, Aydogan
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [4] Deep learning-based transformation of H&E stained tissues into special stains
    Kevin de Haan
    Yijie Zhang
    Jonathan E. Zuckerman
    Tairan Liu
    Anthony E. Sisk
    Miguel F. P. Diaz
    Kuang-Yu Jen
    Alexander Nobori
    Sofia Liou
    Sarah Zhang
    Rana Riahi
    Yair Rivenson
    W. Dean Wallace
    Aydogan Ozcan
    Nature Communications, 12
  • [5] Advanced Deep Learning for Segmentation of Cancer Tissues from H&E Images
    Ochi, Mieko
    Komura, Daisuke
    Ushiku, Tetsuo
    Onoyama, Takumi
    Ishikawa, Shumpei
    CANCER SCIENCE, 2025, 116 : 384 - 384
  • [6] Glomeruli segmentation in H&E stained tissue using perceptual organization
    Samsi, Siddharth
    Jarjour, Wael N.
    Krishnamurthy, Ashok
    2012 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2012,
  • [7] Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images
    Al-Milaji, Zahraa
    Ersoy, Ilker
    Hafiane, Adel
    Palaniappan, Kannappan
    Bunyak, Filiz
    PATTERN RECOGNITION LETTERS, 2019, 119 : 214 - 221
  • [8] Nuclei Segmentation in Hematoxylin and Eosin (H&E)-Stained Histopathological Images Using a Deep Neural Network
    Cayir, Sercan
    Tarcan, Serim Hande
    Ayalti, Samet
    Razavi, Salar
    Khameneh, Fariba
    Cetin, Sukru Burak
    Solmaz, Gizem
    Ozsoy, Gulsah
    Yazici, Cisem
    Kayhan, Cavit Kerem
    Tokat, Fatma
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [9] A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H&E stained human tissues
    Gallego, Jaime
    Swiderska-Chadaj, Zaneta
    Markiewicz, Tomasz
    Yamashita, Michifumi
    Gabaldon, M. Alejandra
    Gertych, Arkadiusz
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 89
  • [10] Cell cycle arrest status predicted from H&E stained images using deep learning
    Aigner, Christina
    Reichholf, Brian
    Emschwiller, Maxime
    Pezer, Marija
    Winterhoff, Tobias
    Schallenberg, Simon
    Krupar, Rosemarie
    Ruff, Lukas
    Ruane, Sharon
    Alber, Maximilian
    Klauschen, Frederick
    Trapani, Francesca
    CANCER RESEARCH, 2023, 83 (07)