Rational points on X0+(125)

被引:1
|
作者
Arul, Vishal
Mueller, J. Steffen [1 ,2 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Univ Groningen, Bernoulli Inst, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
关键词
Modular curves; Rational points; Non-abelian Chabauty; CHABAUTY; MAP;
D O I
10.1016/j.exmath.2023.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the rational points on the Atkin-Lehner quotient X0E (125) using the quadratic Chabauty method. Our work completes the study of exceptional rational points on the curves X0E (N) of genus between 2 and 6. Together with the work of several authors, this completes the proof of a conjecture of Galbraith. (c) 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:709 / 717
页数:9
相关论文
共 50 条
  • [1] Rational points on X0+(p)
    Galbraith, SD
    [J]. EXPERIMENTAL MATHEMATICS, 1999, 8 (04) : 311 - 318
  • [2] RATIONAL POINTS ON X0+(pr)
    Bilu, Yuri
    Parent, Pierre
    Rebolledo, Marusia
    [J]. ANNALES DE L INSTITUT FOURIER, 2013, 63 (03) : 957 - 984
  • [3] A Note on the Rational Points of X0+(N)
    Castano-Bernard, Carlos
    [J]. EXPERIMENTAL MATHEMATICS, 2009, 18 (02) : 129 - 135
  • [4] Rational points on X0+(37M)
    Arai, Keisuke
    Momose, Fumiyuki
    [J]. JOURNAL OF NUMBER THEORY, 2010, 130 (10) : 2272 - 2282
  • [5] Equations and rational points of the modular curves X0+ (p)
    Mercuri, Pietro
    [J]. RAMANUJAN JOURNAL, 2018, 47 (02): : 291 - 308
  • [6] RATIONAL-POINTS ON THE MODULAR-CURVES X0+(N)
    MOMOSE, F
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (02) : 269 - 286
  • [7] Points on X0+(N) over quadratic fields
    Arai, Keisuke
    Momose, Fumiyuki
    [J]. ACTA ARITHMETICA, 2012, 152 (02) : 159 - 173
  • [8] SPECTROSCOPY OF A0+[-X0+ AND B1[-X0+ TRANSITIONS IN CDKR
    CZAJKOWSKI, M
    BOBKOWSKI, R
    KRAUSE, L
    [J]. PHYSICAL REVIEW A, 1991, 44 (09): : 5730 - 5736
  • [9] Weierstrass points on X0+ (p) and supersingular j-invariants
    Treneer, Stephanie
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2017, 4
  • [10] Infinitely many cubic points for X0+(N) over Q
    Bars, Francesc
    Dalal, Tarun
    [J]. ACTA ARITHMETICA, 2022, 206 (04) : 373 - 388