Homogenization of Dissipative Hamiltonian Systems Under Levy Fluctuations

被引:1
|
作者
Wang, Zibo [1 ,2 ]
Lv, Li [1 ,2 ]
Duan, Jinqiao [3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Peoples R China
[3] IIT, Dept Appl Math, Chicago, IL 60616 USA
[4] IIT, Dept Phys, Chicago, IL 60616 USA
关键词
Homogenization; Hamiltonian systems; Non-Gaussian Levy noise; Noise-induced drift; Small mass limit; Effective reduction; LIMIT; EQUATIONS; DRIVEN; NOISE;
D O I
10.1007/s00332-022-09872-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the small mass limit for a class of Hamiltonian systems with multiplicative non-Gaussian Levy noise. Derivation of the limiting equation depends on the structure of the stochastic Hamiltonian systems, in which a discontinuous noise-induced drift term arises. Firstly, we show that the momentum in the stochastic Hamiltonian system converges to zero when the kinetic energy has polynomial growth. Then, we prove that the stochastic Hamiltonian system with classical kinetic energy converges to the limiting equation in probability, with respect to Skorokhod topology as the mass tends to zero.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Homogenization of Dissipative Hamiltonian Systems Under Lévy Fluctuations
    Zibo Wang
    Li Lv
    Jinqiao Duan
    Journal of Nonlinear Science, 2023, 33
  • [2] Homogenization of dissipative, noisy, Hamiltonian dynamics
    Birrell, Jeremiah
    Wehr, Jan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (07) : 2367 - 2403
  • [3] DISSIPATIVE SOLUTIONS TO HAMILTONIAN SYSTEMS
    Bianchini, Stefano
    Leccese, Giacomo Maria
    KINETIC AND RELATED MODELS, 2024, 17 (01) : 162 - 208
  • [4] DISSIPATIVE SYSTEMS AND BATEMAN HAMILTONIAN
    PEDROSA, IA
    BASEIA, B
    HADRONIC JOURNAL, 1983, 6 (06): : 1733 - 1741
  • [5] Dissipative discrete Hamiltonian systems
    Allahverdiev, BP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (7-8) : 1139 - 1155
  • [6] Global fluctuations in dissipative systems
    Maynar, Pablo
    Isabel Garcia de Soria, Maria
    Schehr, Gregory
    Barrat, Alain
    Trizac, Emmanuel
    MODELING AND SIMULATION OF NEW MATERIALS, 2009, 1091 : 201 - +
  • [7] Lyapunov exponents for Hamiltonian systems under small Levy-type perturbations
    Chao, Ying
    Wei, Pingyuan
    Duan, Jinqiao
    CHAOS, 2021, 31 (08)
  • [8] Stabilization of solutions of dissipative Hamiltonian systems
    Chill, Ralph
    Radzki, Wiktor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 750 - 758
  • [9] On the quantization of sectorially Hamiltonian dissipative systems
    Castagnino, M.
    Gadella, M.
    Lara, L. P.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 94 - 100
  • [10] Dynamics of Dissipative Systems with Hamiltonian Structures
    Zhang, Xiaoming
    Cao, Zhenbang
    Xie, Jianhua
    Li, Denghui
    Grebogi, Celso
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (14):