Glia-derived adenosine in the ventral hippocampus drives pain-related anxiodepression in a mouse model resembling trigeminal neuralgia

被引:7
|
作者
Lv, Xue-Jing [1 ]
Lv, Su -Su [1 ]
Wang, Guo-Hong [1 ]
Chang, Yue [1 ]
Cai, Ya-Qi [1 ]
Liu, Hui -Zhu [1 ]
Xu, Guang-Zhou [2 ,4 ]
Xu, Wen-Dong [1 ,3 ,4 ]
Zhang, Yu-Qiu [1 ,4 ]
机构
[1] Fudan Univ, Jingan Dist Ctr Hosp Shanghai, Dept Translat Neurosci, State Key Lab Med Neurobiol,Inst Brain Sci, Shanghai 200032, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Dept Oral Surg, Shanghai 200023, Peoples R China
[3] Fudan Univ, Huashan Hosp, Dept Hand Surg, Shanghai 200040, Peoples R China
[4] Fudan Univ, Inst Brain Sci, B5-005 Res Bldg 2B, 131 Dong Rd, Shanghai 200032, Peoples R China
基金
中国国家自然科学基金;
关键词
Adenosine; Anxiodepression; Astrocyte; Microglia; Trigeminal neuralgia; Ventral hippocampus; DEPRESSIVE-LIKE BEHAVIOR; MICROGLIAL ACTIVATION; NEUROPATHIC PAIN; A(2A) RECEPTORS; BRAIN-INJURY; NEUROINFLAMMATION; CELLS; ASTROCYTES; CAFFEINE; STRESS;
D O I
10.1016/j.bbi.2024.01.012
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Glial activation and dysregulation of adenosine triphosphate (ATP)/adenosine are involved in the neuropathology of several neuropsychiatric illnesses. The ventral hippocampus (vHPC) has attracted considerable attention in relation to its role in emotional regulation. However, it is not yet clear how vHPC glia and their derived adenosine regulate the anxiodepressive-like consequences of chronic pain. Here, we report that chronic cheek pain elevates vHPC extracellular ATP/adenosine in a mouse model resembling trigeminal neuralgia (rTN), which mediates pain -related anxiodepression, through a mechanism that involves synergistic effects of astrocytes and microglia. We found that rTN resulted in robust activation of astrocytes and microglia in the CA1 area of the vHPC (vCA1). Genetic or pharmacological inhibition of astrocytes and connexin 43, a hemichannel mainly distributed in astrocytes, completely attenuated rTN-induced extracellular ATP/adenosine elevation and anxiodepressive-like behaviors. Moreover, inhibiting microglia and CD39, an enzyme primarily expressed in microglia that degrades ATP into adenosine, significantly suppressed the increase in extracellular adenosine and anxiodepressive-like behaviors. Blockade of the adenosine A2A receptor (A2AR) alleviated rTN-induced anxiodepressive-like behaviors. Furthermore, interleukin (IL) -17A, a pro -inflammatory cytokine probably released by activated microglia, markedly increased intracellular calcium in vCA1 astrocytes and triggered ATP/adenosine release. The astrocytic metabolic inhibitor fluorocitrate and the CD39 inhibitor ARL 67156, attenuated IL17A -induced increases in extracellular ATP and adenosine, respectively. In addition, astrocytes, microglia, CD39, and A2AR inhibitors all reversed rTN-induced hyperexcitability of pyramidal neurons in the vCA1. Taken together, these findings suggest that activation of astrocytes and microglia in the vCA1 increases extracellular adenosine, which leads to pain -related anxiodepression via A2AR activation. Approaches targeting astrocytes, microglia, and adenosine signaling may serve as novel therapies for pain -related anxiety and depression.
引用
收藏
页码:224 / 241
页数:18
相关论文
empty
未找到相关数据