Assuring Safe and Efficient Operation of UAV Using Explainable Machine Learning

被引:6
|
作者
Alharbi, Abdulrahman [1 ]
Petrunin, Ivan [1 ]
Panagiotakopoulos, Dimitrios [1 ]
机构
[1] Cranfield Univ, Sch Aerosp Transport & Mfg, Bedford MK43 0AL, England
关键词
demand-capacity management; explainable artificial intelligence; low-altitude airspace operations; machine learning; traffic-flow management; ARTIFICIAL-INTELLIGENCE; CLASSIFICATIONS; CERTIFICATION; CHALLENGES; MODELS; AI;
D O I
10.3390/drones7050327
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The accurate estimation of airspace capacity in unmanned traffic management (UTM) operations is critical for a safe, efficient, and equitable allocation of airspace system resources. While conventional approaches for assessing airspace complexity certainly exist, these methods fail to capture true airspace capacity, since they fail to address several important variables (such as weather). Meanwhile, existing AI-based decision-support systems evince opacity and inexplicability, and this restricts their practical application. With these challenges in mind, the authors propose a tailored solution to the needs of demand and capacity management (DCM) services. This solution, by deploying a synthesized fuzzy rule-based model and deep learning will address the trade-off between explicability and performance. In doing so, it will generate an intelligent system that will be explicable and reasonably comprehensible. The results show that this advisory system will be able to indicate the most appropriate regions for unmanned aerial vehicle (UAVs) operation, and it will also increase UTM airspace availability by more than 23%. Moreover, the proposed system demonstrates a maximum capacity gain of 65% and a minimum safety gain of 35%, while possessing an explainability attribute of 70%. This will assist UTM authorities through more effective airspace capacity estimation and the formulation of new operational regulations and performance requirements.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] ASSURING SAFE OPERATION
    Depalma, Angelo
    Lab Manager, 2015, 10 (02): : 64 - 65
  • [2] Explainable machine learning models for corn yield prediction using UAV multispectral data☆
    Kumar, Chandan
    Dhillon, Jagman
    Huang, Yanbo
    Reddy, Krishna
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 231
  • [4] Efficient Milling Quality Prediction with Explainable Machine Learning
    Gross, Dennis
    Spieker, Helge
    Gotlieb, Arnaud
    Knoblauch, Ricardo
    Elmansori, Mohamed
    IFAC PAPERSONLINE, 2024, 58 (19): : 43 - 48
  • [5] Key Issues on Assuring the Safe Operation of Heath IT Systems
    Despotou, George
    Jones, Richard
    White, Sean
    Ryan, Mark
    Kelly, Tim
    INTEGRATING INFORMATION TECHNOLOGY AND MANAGEMENT FOR QUALITY OF CARE, 2014, 202 : 205 - 208
  • [6] Visualization and Explainable Machine Learning for Efficient Manufacturing and System Operations
    Le, Dy D.
    Vung Pham
    Nguyen, Huyen N.
    Dang, Tommy
    SMART AND SUSTAINABLE MANUFACTURING SYSTEMS, 2019, 3 (02): : 127 - 147
  • [7] Explainable Machine Learning
    Garcke, Jochen
    Roscher, Ribana
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (01): : 169 - 170
  • [8] BotStop : Packet-based efficient and explainable IoT botnet detection using machine learning
    Alani, Mohammed M.
    COMPUTER COMMUNICATIONS, 2022, 193 : 53 - 62
  • [9] Prediction and Design of Nanozymes using Explainable Machine Learning
    Wei, Yonghua
    Wu, Jin
    Wu, Yixuan
    Liu, Hongjiang
    Meng, Fanqiang
    Liu, Qiqi
    Midgley, Adam C.
    Zhang, Xiangyun
    Qi, Tianyi
    Kang, Helong
    Chen, Rui
    Kong, Deling
    Zhuang, Jie
    Yan, Xiyun
    Huang, Xinglu
    ADVANCED MATERIALS, 2022, 34 (27)
  • [10] Explainable Prediction of Cardiac Arrhythmia Using Machine Learning
    Ye, Xiaohong
    Huang, Yuanqi
    Lu, Qiang
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,