SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS

被引:6
|
作者
Gusev, Sergey Y. V. [1 ]
Volkov, Mikhail V. V. [1 ]
机构
[1] Ural Fed Univ, Inst Nat Sci & Math, Ekaterinburg 620000, Russia
基金
俄罗斯科学基金会;
关键词
additively idempotent semiring; finite basis problem; power semiring; power group; block-group; Hall relation; Brandt monoid; involution semigroup; EQUATIONAL THEORIES; SEMIGROUPS; SUBGROUPS;
D O I
10.1017/S1446788722000374
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every group G, the set P(G) of its subsets forms a semiring under set-theoretical union u and element-wise multiplication middot, and forms an involution semigroup under middot and element-wise inversion( -1). We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring (P(G), u, middot) nor the involution semigroup (P(G), middot, (-1)) admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.
引用
收藏
页码:354 / 374
页数:21
相关论文
共 50 条