共 50 条
SEMIRING AND INVOLUTION IDENTITIES OF POWER GROUPS
被引:6
|作者:
Gusev, Sergey Y. V.
[1
]
Volkov, Mikhail V. V.
[1
]
机构:
[1] Ural Fed Univ, Inst Nat Sci & Math, Ekaterinburg 620000, Russia
基金:
俄罗斯科学基金会;
关键词:
additively idempotent semiring;
finite basis problem;
power semiring;
power group;
block-group;
Hall relation;
Brandt monoid;
involution semigroup;
EQUATIONAL THEORIES;
SEMIGROUPS;
SUBGROUPS;
D O I:
10.1017/S1446788722000374
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For every group G, the set P(G) of its subsets forms a semiring under set-theoretical union u and element-wise multiplication middot, and forms an involution semigroup under middot and element-wise inversion( -1). We show that if the group G is finite, non-Dedekind, and solvable, neither the semiring (P(G), u, middot) nor the involution semigroup (P(G), middot, (-1)) admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.
引用
收藏
页码:354 / 374
页数:21
相关论文