Cross-Domain Knowledge Transfer Using High Dynamic Range Imaging in Synthetic Datasets

被引:0
|
作者
Peleka, Georgia [1 ]
Sarafis, Dimitrios [1 ]
Mariolis, Ioannis [1 ]
Tzovaras, Dimitrios [1 ]
机构
[1] Informat Technol Inst, Ctr Res & Technol Hellas CERTH, 6th Km Charilaou Thermi Rd, Thessaloniki, Greece
基金
欧盟地平线“2020”;
关键词
Artificial neural networks; knowledge transfer; robot vision; semantic segmentation; synthetic data;
D O I
10.1080/01969722.2022.2030004
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Herein, we propose a framework for the generation of photorealistic synthetic datasets using High Dynamic Range Imaging (HDRI) that include all kinds of information computer vision algorithms need. Furthermore, by utilizing the proposed framework, we demonstrate cross-domain knowledge transfer in a semantic segmentation scenario. We found that deep neural networks trained with our synthetic images or with a mix of real and synthetic perform equal to or in cases better than those trained solely on real images. To our knowledge, this is the first work that uses HDRI to successfully transfer knowledge from the synthetic domain to the real world.
引用
收藏
页码:372 / 386
页数:15
相关论文
共 50 条
  • [1] Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets
    Cortes, Andoni
    Rodriguez, Clemente
    Velez, Gorka
    Barandiaran, Javier
    Nieto, Marcos
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) : 190 - 199
  • [2] Multiple Knowledge Transfer for Cross-Domain Recommendation
    Do, Quan
    Verma, Sunny
    Chen, Fang
    Liu, Wei
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 529 - 542
  • [3] Graph Enabled Cross-Domain Knowledge Transfer
    Yao, Shibo
    ProQuest Dissertations and Theses Global, 2022,
  • [4] A cross-domain knowledge transfer method for process discovery of urban community services with small datasets
    Liu, Zhao-ge
    Li, Xiang-yang
    Qiao, Li-min
    BUSINESS PROCESS MANAGEMENT JOURNAL, 2022, 28 (04) : 1005 - 1024
  • [5] Cross-Domain Knowledge Transfer Using Semi-supervised Classification
    Zhen, Yi
    Li, Chunping
    AI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5360 : 362 - +
  • [6] Cross-Domain Fault Diagnosis Using Knowledge Transfer Strategy: A Review
    Zheng, Huailiang
    Wang, Rixin
    Yang, Yuantao
    Yin, Jiancheng
    Li, Yongbo
    Li, Yuqing
    Xu, Minqiang
    IEEE ACCESS, 2019, 7 : 129260 - 129290
  • [7] Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation
    Zhao, Guoshuai
    Zhang, Xiaolong
    Tang, Hao
    Shen, Jialie
    Qian, Xueming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9539 - 9550
  • [8] Knowledge Transfer for Cross-Domain Book Recommender System
    Chaima, Ben Jaafar
    Kaoutar, Mrhar
    Sara, Qassimi
    DIGITAL TECHNOLOGIES AND APPLICATIONS, ICDTA 2024, VOL 4, 2024, 1101 : 274 - 283
  • [9] Selective Knowledge Transfer for Cross-Domain Collaborative Recommendation
    Zhang, Hongwei
    Kong, Xiangwei
    Zhang, Yujia
    IEEE ACCESS, 2021, 9 : 48039 - 48051
  • [10] Knowledge-inspired Subdomain Adaptation for Cross-Domain Knowledge Transfer
    Chen, Liyue
    Wang, Linian
    Xu, Jinyu
    Chen, Shuai
    Wang, Weiqiang
    Zhao, Wenbiao
    Li, Qiyu
    Wang, Leye
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 234 - 244