PI degree of quantized Weyl algebras

被引:0
|
作者
Bera, Sanu [1 ]
Mukherjee, Snehashis [1 ]
机构
[1] Ramakrishna Mission Vivekananda Educ & Res Inst, Sch Math Sci, Belur Math, Howrah 711202, India
关键词
Polynomial identity algebra; quantized Weyl algebra; PRIME IDEALS;
D O I
10.1007/s12044-023-00739-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the polynomial identity (PI) degree of the multiparameter quantized Weyl algebras have been explicitly computed at roots of unity.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] PI degree of quantized Weyl algebras
    Sanu Bera
    Snehashis Mukherjee
    Proceedings - Mathematical Sciences, 133
  • [2] Endomorphisms of Quantized Weyl Algebras
    Backelin, Erik
    LETTERS IN MATHEMATICAL PHYSICS, 2011, 97 (03) : 317 - 338
  • [3] Endomorphisms of Quantized Weyl Algebras
    Erik Backelin
    Letters in Mathematical Physics, 2011, 97 : 317 - 338
  • [4] Quantized Weyl algebras at roots of unity
    Levitt, Jesse
    Yakimov, Milen
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 225 (02) : 681 - 719
  • [5] Quantized Weyl algebras at roots of unity
    Jesse Levitt
    Milen Yakimov
    Israel Journal of Mathematics, 2018, 225 : 681 - 719
  • [6] Prime ideals of quantized Weyl algebras
    Akhavizadegan, M
    Jordan, DA
    GLASGOW MATHEMATICAL JOURNAL, 1996, 38 : 283 - 297
  • [7] Connected quantized Weyl algebras and quantum cluster algebras
    Fish, Christopher D.
    Jordan, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (08) : 2374 - 2412
  • [8] Weyl group extension of quantized current algebras
    Ding, J
    Khoroshkin, S
    TRANSFORMATION GROUPS, 2000, 5 (01) : 35 - 59
  • [9] Weyl group extension of quantized current algebras
    J. Ding
    S. Khoroshkin
    Transformation Groups, 2000, 5 : 35 - 59
  • [10] The isomorphism problem for multiparameter quantized Weyl algebras
    Goodearl K.R.
    Hartwig J.T.
    São Paulo Journal of Mathematical Sciences, 2015, 9 (1) : 53 - 61