Inverse Models for Estimating the Initial Condition of Spatio-Temporal Advection-Diffusion Processes

被引:1
|
作者
Liu, Xiao [1 ]
Yeo, Kyongmin [2 ]
机构
[1] Univ Arkansas, Dept Ind Engn, Fayetteville, AR 72701 USA
[2] IBM TJ Watson Res Ctr, Yorktown Hts, NY USA
基金
美国国家科学基金会;
关键词
Advection-diffusion processes; Alternating direction method of multipliers; Inverse models; Spatio-temporal processes;
D O I
10.1080/00401706.2023.2181222
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inverse problems involve making inference about unknown parameters of a physical process using observational data. This article investigates an important class of inverse problems-the estimation of the initial condition of a spatio-temporal advection-diffusion process using spatially sparse data streams. Three spatial sampling schemes are considered, including irregular, nonuniform and shifted uniform sampling. The irregular sampling scheme is the general scenario, while computationally efficient solutions are available in the spectral domain for nonuniform and shifted uniform sampling. For each sampling scheme, the inverse problem is formulated as a regularized convex optimization problem that minimizes the distance between forward model outputs and observations. The optimization problem is solved by the Alternating Direction Method of Multipliers algorithm, which also handles the situation when a linear inequality constraint (e.g., non-negativity) is imposed on the model output. Numerical examples are presented, code is made available on GitHub, and discussions are provided to generate some useful insights of the proposed inverse modeling approaches.
引用
收藏
页码:432 / 445
页数:14
相关论文
共 50 条
  • [1] spate: An R Package for Spatio-Temporal Modeling with a Stochastic Advection-Diffusion Process
    Sigrist, Fabio
    Kuensch, Hans R.
    Stahel, Werner A.
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 63 (14): : 1 - 23
  • [2] Analysis of a spatio-temporal advection-diffusion model for human behaviors during a catastrophic event
    Khalil, Kamal
    Lanza, Valentina
    Manceau, David
    Aziz-Alaoui, M. A.
    Provitolo, Damienne
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (07): : 1309 - 1342
  • [3] Non-stationary spatio-temporal modeling using the stochastic advection-diffusion equation
    Berild, Martin Outzen
    Fuglstad, Geir-Arne
    SPATIAL STATISTICS, 2024, 64
  • [4] The SPDE approach for spatio-temporal datasets with advection and diffusion
    Clarotto, Lucia
    Allard, Denis
    Romary, Thomas
    Desassis, Nicolas
    SPATIAL STATISTICS, 2024, 62
  • [5] Spatio-temporal Diffusion Point Processes
    Yuan, Yuan
    Ding, Jingtao
    Shao, Chenyang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3173 - 3184
  • [6] Lattice models of advection-diffusion
    Pierrehumbert, RT
    CHAOS, 2000, 10 (01) : 61 - 74
  • [7] Stability Analysis of Coupled Advection-Diffusion Models with Bulk Interface Condition
    Zhang, Hong
    Liu, Zhengyu
    Constantinescu, Emil
    Jacob, Robert
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)
  • [8] Stability Analysis of Coupled Advection-Diffusion Models with Bulk Interface Condition
    Hong Zhang
    Zhengyu Liu
    Emil Constantinescu
    Robert Jacob
    Journal of Scientific Computing, 2022, 93
  • [9] Spatio-temporal processes
    Harvill, Jane L.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (03) : 375 - 382
  • [10] Deformation Formulas and Inverse Problems for Advection-diffusion Equations
    Nakagiri, Shin-ichi
    SIMULATION AND MODELING RELATED TO COMPUTATIONAL SCIENCE AND ROBOTICS TECHNOLOGY, 2012, 37 : 61 - 78