Lattice-Boltzmann simulation of Two-phase flow in carbonate porous media retrieved from computed Microtomography

被引:9
|
作者
Wang, Daigang [1 ]
Liu, Fangzhou [1 ]
Sun, Jingjing [2 ]
Li, Yong [3 ]
Wang, Qi [3 ]
Jiao, Yuwei [3 ]
Song, Kaoping [1 ]
Wang, Shu [3 ]
Ma, Ruicheng [3 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] Sinopec, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[3] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbonate rock; Microfocus CT; Oil-water two-phase flow; Lattice Boltzmann simulation; Oil displacement efficiency; Underlying mechanism; RELATIVE PERMEABILITY; DYNAMICS; DROPLETS; CLUSTER; ROCKS; WET;
D O I
10.1016/j.ces.2023.118514
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Marine carbonate reservoirs widely distributed in the Middle East are characterized by multimodal pore structures and complex wettability, usually causing a great difference in pore-scale oil displacement effi-ciency. However, the underlying mechanisms are still ambiguous. In this study, a natural rock sample selected from a typical carbonate reservoir in the Middle East is imaged with a high-resolution X-ray micro-CT, and the three-dimensional geometry model of microstructures are extracted. A multiple -relaxation-time color-gradient lattice Boltzmann model is developed and validated to simulate oil-water two-phase flow in the carbonate porous media. The influences of rock wettability, oil-wet heterogeneity, capillary number, and oil-water viscosity ratio on oil displacement efficiency and fluid distribution in multimodal carbonate pore space are ultimately explored, following by analysis of pore-scale oil droplets mobilization with integral geometry. Results show that, the rock wettability, capillary number and oil- water viscosity ratio have significant impacts on the pore-scale oil displacement efficiency and fluid distribution in multimodal carbonate pore space while oil-wet heterogeneity has little effect. The oil dis-placement efficiency usually becomes larger with the increase of capillary number and the water-wetting degree as well as the decrease of oil-water viscosity ratio. Due to dynamic competition between capillary pressure and viscous force, the continuous oil droplets are fragmented into a large quantity of isolated oil droplets in the early stage of water flooding, showing a sharp decrease in the volume of continuous oil droplets, a rapid increase in the volume of isolated oil droplets, and a poor topological connectivity; In the middle and late stage of water flooding, the isolated oil droplets are gradually stripped and mobilized, leading to a decrease in the volume of oil droplets and an obvious improvement in topological connectivity.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Lattice-Boltzmann simulation of two-phase flow in porous media
    Pan, C
    Hilpert, M
    Miller, CT
    WATER RESOURCES RESEARCH, 2004, 40 (01) : W015011 - W0150114
  • [2] Lattice-Boltzmann simulation of ideal and nonideal immiscible two-phase flow in porous media
    Paunov, VN
    Angelopoulos, A
    Burganos, VN
    Payatakes, AC
    COMPUTATIONAL METHODS IN WATER RESOURCES XI, VOL 1: COMPUTATIONAL METHODS IN SUBSURFACE FLOW AND TRANSPORT PROBLEMS, 1996, : 457 - 464
  • [3] Discretization limits of lattice-Boltzmann methods for studying immiscible two-phase flow in porous media
    Li, Zhe
    McClure, James E.
    Middleton, Jill
    Varslot, Trond
    Sheppard, Adrian P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (09) : 1162 - 1197
  • [4] A LATTICE BOLTZMANN MODEL FOR TWO-PHASE FLOW IN POROUS MEDIA
    Chai, Zhenhua
    Liang, Hong
    Du, Rui
    Shi, Baochang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : B746 - B772
  • [5] Lattice-Boltzmann simulation of two-phase fluid flows
    Chen, Y
    Teng, SL
    Shukuwa, T
    Ohashi, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1383 - 1391
  • [6] Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve effect in porous media
    Xu, Zhiyuan
    Liu, Haihu
    Valocchi, Albert J.
    WATER RESOURCES RESEARCH, 2017, 53 (05) : 3770 - 3790
  • [7] Lattice-Boltzmann algorithm for simulating thermal two-phase flow
    Palmer, BJ
    Rector, DR
    PHYSICAL REVIEW E, 2000, 61 (05): : 5295 - 5306
  • [8] Amadeus project and microscopic simulation of boiling two-phase flow by the lattice-Boltzmann method
    Kato, Y
    Kono, K
    Seta, T
    Martinez, D
    Chen, SY
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 843 - 858
  • [9] Investigation of two-phase flow in porous media using lattice Boltzmann method
    Taghilou, Mohammad
    Rahimian, Mohammad Hassan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (02) : 424 - 436
  • [10] A combined Lattice-Boltzmann method for the simulation of two-phase flows in microchannel
    Riaud, Antoine
    Wang, Kai
    Luo, Guangsheng
    CHEMICAL ENGINEERING SCIENCE, 2013, 99 : 238 - 249