Deep Physics-Informed Super-Resolution of Cardiac 4D-Flow MRI

被引:3
|
作者
Shone, Fergus [1 ,2 ,3 ,4 ]
Ravikumar, Nishant [1 ,2 ]
Lassila, Toni [1 ,2 ,3 ]
MacRaild, Michael [1 ,2 ,3 ]
Wang, Yongxing [1 ,2 ]
Taylor, Zeike A. [1 ,2 ]
Jimack, Peter [3 ]
Dall'Armellina, Erica [1 ,2 ,4 ]
Frangi, Alejandro F. [1 ,2 ,3 ,4 ]
机构
[1] Univ Leeds, Ctr Computat Imaging & Simulat Technol Biomed, Sch Comp Mech Engn & Med, Leeds, W Yorkshire, England
[2] Natl Inst Hlth & Care Res NIHR, Leeds Biomed Res Ctr BRC, Leeds, W Yorkshire, England
[3] Univ Leeds, Sch Comp, EPSRC Ctr Doctoral Training Fluid Dynam, Leeds, W Yorkshire, England
[4] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Sch Med, Leeds, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Physics-informed machine learning; 4D-flow MRI; Super-resolution;
D O I
10.1007/978-3-031-34048-2_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
4D-flow magnetic resonance imaging (MRI) provides noninvasive blood flow reconstructions in the heart. However, low spatio-temporal resolution and significant noise artefacts hamper the accuracy of derived haemodynamic quantities. We propose a physics-informed super-resolution approach to address these shortcomings and uncover hidden solution fields. We demonstrate the feasibility of the model through two synthetic studies generated using computational fluid dynamics. The Navier-Stokes equations and no-slip boundary condition on the endocardium are weakly enforced, regularising model predictions to accommodate network training without high-resolution labels. We show robustness to each type of data degradation, achieving normalised velocity RMSE values of under 16% at extreme spatial and temporal upsampling rates of 16x and 10x respectively, using a signal-to-noise ratio of 7.
引用
收藏
页码:511 / 522
页数:12
相关论文
共 50 条
  • [1] Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets
    Fathi, Mojtaba F.
    Perez-Raya, Isaac
    Baghaie, Ahmadreza
    Berg, Philipp
    Janiga, Gabor
    Arzani, Amirhossein
    D'Souza, Roshan M.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 197
  • [2] SRflow: Deep learning based super-resolution of 4D-flow MRI data
    Shit, Suprosanna
    Zimmermann, Judith
    Ezhov, Ivan
    Paetzold, Johannes C. C.
    Sanches, Augusto F. F.
    Pirkl, Carolin
    Menze, Bjoern H. H.
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [3] PhySR: Physics-informed deep super-resolution for spatiotemporal data
    Ren, Pu
    Rao, Chengping
    Liu, Yang
    Ma, Zihan
    Wang, Qi
    Wang, Jian-Xun
    Sun, Hao
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 492
  • [4] Unsupervised Denoising and Super-Resolution of Vascular Flow Data by Physics-Informed Machine Learning
    Sautory, Theophile
    Shadden, Shawn C.
    [J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (09):
  • [5] Cerebrovascular super-resolution 4D Flow MRI - Sequential combination of resolution enhancement by deep learning and physics-informed image processing to non-invasively quantify intracranial velocity, flow, and relative pressure
    Ferdian, E.
    Marlevi, D.
    Schollenberger, J.
    Aristova, M.
    Edelman, E. R.
    Schnell, S.
    Figueroa, C. A.
    Nordsletten, D. A.
    Young, A. A.
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 88
  • [6] Physics-informed neural operator solver and super-resolution for solid mechanics
    Kaewnuratchadasorn, Chawit
    Wang, Jiaji
    Kim, Chul-Woo
    [J]. COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024, : 3435 - 3451
  • [7] Physics-informed recurrent super-resolution generative reconstruction in rotating detonation combustor
    Wang, Xutun
    Wen, Haocheng
    Wen, Quan
    Wang, Bing
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [8] Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels
    Gao, Han
    Sun, Luning
    Wang, Jian-Xun
    [J]. PHYSICS OF FLUIDS, 2021, 33 (07)
  • [9] Physics-informed deep learning framework to model intense precipitation events at super resolution
    B. Teufel
    F. Carmo
    L. Sushama
    L. Sun
    M. N. Khaliq
    S. Bélair
    A. Shamseldin
    D. Nagesh Kumar
    J. Vaze
    [J]. Geoscience Letters, 10
  • [10] Physics-informed deep learning framework to model intense precipitation events at super resolution
    Teufel, B.
    Carmo, F.
    Sushama, L.
    Sun, L.
    Khaliq, M. N.
    Belair, S.
    Shamseldin, A.
    Kumar, D. Nagesh
    Vaze, J.
    [J]. GEOSCIENCE LETTERS, 2023, 10 (01)