Interpreting Conv-LSTM for Spatio-Temporal Soil Moisture Prediction in China

被引:3
|
作者
Huang, Feini [1 ]
Zhang, Yongkun [1 ]
Zhang, Ye [1 ]
Wei, Shangguan [1 ]
Li, Qingliang [2 ]
Li, Lu [1 ]
Jiang, Shijie [3 ]
机构
[1] Sun Yat sen Univ, Sch Atmospher Sci, Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangdong Prov Key Lab Climate Change, Zhuhai 519082, Peoples R China
[2] Changchun Normal Univ, Coll Comp Sci & Technol, Changchun 130032, Peoples R China
[3] Helmholtz Ctr Environm Res, Dept Computat Hydrosyst, D-04318 Leipzig, Germany
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 05期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
explainable artificial intelligence; deep learning; soil moisture prediction; interpretation; IMPACTS; MODEL;
D O I
10.3390/agriculture13050971
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil moisture (SM) is a key variable in Earth system science that affects various hydrological and agricultural processes. Convolutional long short-term memory (Conv-LSTM) networks are widely used deep learning models for spatio-temporal SM prediction, but they are often regarded as black boxes that lack interpretability and transparency. This study aims to interpret Conv-LSTM for spatio-temporal SM prediction in China, using the permutation importance and smooth gradient methods for global and local interpretation, respectively. The trained Conv-LSTM model achieved a high R2 of 0.92. The global interpretation revealed that precipitation and soil properties are the most important factors affecting SM prediction. Furthermore, the local interpretation showed that the seasonality of variables was more evident in the high-latitude regions, but their effects were stronger in low-latitude regions. Overall, this study provides a novel approach to enhance the trust-building for Conv-LSTM models and to demonstrate the potential of artificial intelligence-assisted Earth system modeling and understanding element prediction in the future.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A dual-stage attention-based Conv-LSTM network for spatio-temporal correlation and multivariate time series prediction
    Xiao, Yuteng
    Yin, Hongsheng
    Zhang, Yudong
    Qi, Honggang
    Zhang, Yundong
    Liu, Zhaoyang
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (05) : 2036 - 2057
  • [2] Deep Temporal Conv-LSTM for Activity Recognition
    Mohd Halim Mohd Noor
    Sen Yan Tan
    Mohd Nadhir Ab Wahab
    [J]. Neural Processing Letters, 2022, 54 : 4027 - 4049
  • [3] Deep Temporal Conv-LSTM for Activity Recognition
    Noor, Mohd Halim Mohd
    Tan, Sen Yan
    Ab Wahab, Mohd Nadhir
    [J]. NEURAL PROCESSING LETTERS, 2022, 54 (05) : 4027 - 4049
  • [4] Conv-LSTM: Pedestrian Trajectory Prediction in Crowded Scenarios
    Chen, Kai
    Song, Xiao
    Yu, Hang
    [J]. METHODS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, 2019, 1094 : 29 - 39
  • [5] Short-Term Traffic Flow Prediction with Conv-LSTM
    Liu, Yipeng
    Zheng, Haifeng
    Feng, Xinxin
    Chen, Zhonghui
    [J]. 2017 9TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2017,
  • [6] Temporal self-attention-based Conv-LSTM network for multivariate time series prediction
    Fu, En
    Zhang, Yinong
    Yang, Fan
    Wang, Shuying
    [J]. NEUROCOMPUTING, 2022, 501 : 162 - 173
  • [7] Spatio-temporal prediction of soil moisture and soil strength by depth-to-water maps
    Schoenauer, Marian
    Vaatainen, Kari
    Prinz, Robert
    Lindeman, Harri
    Pszenny, Dariusz
    Jansen, Martin
    Maack, Joachim
    Talbot, Bruce
    Astrup, Rasmus
    Jaeger, Dirk
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 105
  • [8] Spatio-temporal prediction of soil moisture using soil maps, topographic indices and SMAP retrievals
    Schoenauer, Marian
    Prinz, Robert
    Vaatainen, Kari
    Astrup, Rasmus
    Pszenny, Dariusz
    Lindeman, Harri
    Jaeger, Dirk
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
  • [9] Spatio-temporal variability of global soil moisture products
    Roetzer, K.
    Montzka, C.
    Vereecken, H.
    [J]. JOURNAL OF HYDROLOGY, 2015, 522 : 187 - 202
  • [10] On the spatio-temporal dynamics of soil moisture at the field scale
    Vereecken, H.
    Huisman, J. A.
    Pachepsky, Y.
    Montzka, C.
    van der Kruk, J.
    Bogena, H.
    Weihermueller, L.
    Herbst, M.
    Martinez, G.
    Vanderborght, J.
    [J]. JOURNAL OF HYDROLOGY, 2014, 516 : 76 - 96