Remote Sensing Object Detection Based on Convolution and Swin Transformer

被引:14
|
作者
Jiang, Xuzhao [1 ]
Wu, Yonghong [1 ]
机构
[1] Wuhan Univ Technol, Dept Stat, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Feature extraction; Transformers; Remote sensing; Prediction algorithms; Detection algorithms; Classification algorithms; Remote sensing images; object detection; attention mechanism; swin transformer; multi-scale features;
D O I
10.1109/ACCESS.2023.3267435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Remote sensing object detection is an essential task for surveying the earth. It is challenging for the target detection algorithm in natural scenes to obtain satisfactory detection results in remote sensing images. In this paper, the RAST-YOLO (You only look once with Regin Attention and Swin Transformer) algorithm is proposed to address the problems of remote sensing object detection, such as significant differences in target scales, complex backgrounds, and tightly arranged small-size targets. To increase the information interaction range of the feature map, make full use of the background information of the object, and improve the detection accuracy of the object with a complex background, the Regin Attention (RA) mechanism combined with Swin Transformer as the backbone is proposed to extract features. To improve the detection accuracy of small objects, the C3D module is used to fuse deep and shallow semantic information and optimize the multi-scale problem of remote sensing targets. To evaluate the performance of RAST-YOLO, extensive experiments are performed on DIOR and TGRS-HRRSD datasets. The experimental results show that RAST achieves state-of-the-art detection accuracy with high efficiency and robustness. Specifically, compared with the baseline network, the mean average precision (mAP) of detection results is improved by 5% and 2.3% on DIOR and TGRS-HRRSD datasets, respectively, which demonstrates RAST-YOLO is effective and superior. Moreover, the lightweight structure of RAST-YOLO can ensure the real-time detection speed and obtain excellent detection results.
引用
收藏
页码:38643 / 38656
页数:14
相关论文
共 50 条
  • [1] Remote sensing object detection based on a combination of a CNN and the Swin transformer
    Yang, Liu
    Liang, Junhong
    Guo, Liang
    Long, Yang
    Ding, Kaiyan
    He, Qingfang
    Zhang, Zhihang
    REMOTE SENSING LETTERS, 2023, 14 (05) : 450 - 460
  • [2] An Improved Swin Transformer-Based Model for Remote Sensing Object Detection and Instance Segmentation
    Xu, Xiangkai
    Feng, Zhejun
    Cao, Changqing
    Li, Mengyuan
    Wu, Jin
    Wu, Zengyan
    Shang, Yajie
    Ye, Shubing
    REMOTE SENSING, 2021, 13 (23)
  • [3] Swin-Transformer-Based YOLOv5 for Small-Object Detection in Remote Sensing Images
    Cao, Xuan
    Zhang, Yanwei
    Lang, Song
    Gong, Yan
    SENSORS, 2023, 23 (07)
  • [4] Sparse Transformer Based Remote Sensing Rotated Object Detection
    He Linyuan
    Bai Junqiang
    He Xu
    Wang Chen
    Liu Xulun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [5] Enhancing Remote Sensing Object Detection with K-CBST YOLO: Integrating CBAM and Swin-Transformer
    Cheng, Aonan
    Xiao, Jincheng
    Li, Yingcheng
    Sun, Yiming
    Ren, Yafeng
    Liu, Jianli
    REMOTE SENSING, 2024, 16 (16)
  • [6] Remote sensing image change detection based on swin transformer and cross-attention mechanism
    Yan, Weidong
    Cao, Li
    Yan, Pei
    Zhu, Chaosheng
    Wang, Mengtian
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)
  • [7] Enhanced object recognition from remote sensing images based on hybrid convolution and transformer structure
    Nguyen, Hoanh
    Ngo, Thanh Quyen
    Uyen, Hoang Thi Tu
    Duong, Mien Ka
    EARTH SCIENCE INFORMATICS, 2025, 18 (02)
  • [8] Remote Sensing Image Fusion Method Based on Improved Swin Transformer
    Li Zitong
    Zhao Jiankang
    Xu Jingran
    Long Haihui
    Liu Chuanqi
    ACTA PHOTONICA SINICA, 2023, 52 (11)
  • [9] DEST: Difference enhanced-Swin Transformer for remote sensing change detection
    Wang, Xin
    Zeng, Zeyang
    Li, Li
    REMOTE SENSING LETTERS, 2024, 15 (12) : 1229 - 1238
  • [10] Transformer with large convolution kernel decoder network for salient object detection in optical remote sensing images
    Dong, Pengwei
    Wang, Bo
    Cong, Runmin
    Sun, Hai-Han
    Li, Chongyi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 240